基于MOEA/D及其修正的多目标模糊遗传机器学习

Y. Nojima, Koki Arahari, Shuji Takemura, H. Ishibuchi
{"title":"基于MOEA/D及其修正的多目标模糊遗传机器学习","authors":"Y. Nojima, Koki Arahari, Shuji Takemura, H. Ishibuchi","doi":"10.1109/FUZZ-IEEE.2017.8015749","DOIUrl":null,"url":null,"abstract":"Various evolutionary multiobjective optimization (EMO) algorithms have been used in the field of evolutionary fuzzy systems (EFS), because EMO algorithms can easily handle multiple objective functions such as the accuracy maximization and complexity minimization for fuzzy system design. Most EMO algorithms used in EFS are Pareto dominance-based algorithms such as NSGA-II, SPEA2, and PAES. There are a few studies where other types of EMO algorithms are used in EFS. In this paper, we apply a multiobjective evolutionary algorithm based on decomposition called MOEA/D to EFS for fuzzy classifier design. MOEA/D is one of the most well-known decomposition-based EMO algorithms. The key idea is to divide a multiobjective optimization problem into a number of single-objective problems using a set of uniformly distributed weight vectors in a scalarizing function. We propose a new scalarizing function called an accuracy-oriented function (AOF) which is specialized for classifier design. We examine the effects of using AOF in MOEA/D on the search ability of our multiobjective fuzzy genetics-based machine learning (GBML). We also examine the synergy effect of MOEA/D with AOF and parallel distributed implementation of fuzzy GBML on the generalization ability.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiobjective fuzzy genetics-based machine learning based on MOEA/D with its modifications\",\"authors\":\"Y. Nojima, Koki Arahari, Shuji Takemura, H. Ishibuchi\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various evolutionary multiobjective optimization (EMO) algorithms have been used in the field of evolutionary fuzzy systems (EFS), because EMO algorithms can easily handle multiple objective functions such as the accuracy maximization and complexity minimization for fuzzy system design. Most EMO algorithms used in EFS are Pareto dominance-based algorithms such as NSGA-II, SPEA2, and PAES. There are a few studies where other types of EMO algorithms are used in EFS. In this paper, we apply a multiobjective evolutionary algorithm based on decomposition called MOEA/D to EFS for fuzzy classifier design. MOEA/D is one of the most well-known decomposition-based EMO algorithms. The key idea is to divide a multiobjective optimization problem into a number of single-objective problems using a set of uniformly distributed weight vectors in a scalarizing function. We propose a new scalarizing function called an accuracy-oriented function (AOF) which is specialized for classifier design. We examine the effects of using AOF in MOEA/D on the search ability of our multiobjective fuzzy genetics-based machine learning (GBML). We also examine the synergy effect of MOEA/D with AOF and parallel distributed implementation of fuzzy GBML on the generalization ability.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

进化多目标优化算法在进化模糊系统中得到了广泛的应用,因为它可以很容易地处理模糊系统设计的精度最大化和复杂度最小化等多个目标函数。EFS中使用的大多数EMO算法是基于Pareto优势的算法,如NSGA-II、SPEA2和PAES。有一些研究在EFS中使用了其他类型的EMO算法。本文将基于分解的多目标进化算法MOEA/D应用于模糊分类器设计。MOEA/D是最著名的基于分解的EMO算法之一。其关键思想是利用一组均匀分布的权重向量在标度函数中将多目标优化问题分解为多个单目标问题。我们提出了一种新的标量函数,称为精度导向函数(AOF),它是专门用于分类器设计的。我们研究了在MOEA/D中使用AOF对基于模糊遗传的多目标机器学习(GBML)搜索能力的影响。我们还研究了MOEA/D与AOF的协同效应以及模糊GBML的并行分布式实现对泛化能力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective fuzzy genetics-based machine learning based on MOEA/D with its modifications
Various evolutionary multiobjective optimization (EMO) algorithms have been used in the field of evolutionary fuzzy systems (EFS), because EMO algorithms can easily handle multiple objective functions such as the accuracy maximization and complexity minimization for fuzzy system design. Most EMO algorithms used in EFS are Pareto dominance-based algorithms such as NSGA-II, SPEA2, and PAES. There are a few studies where other types of EMO algorithms are used in EFS. In this paper, we apply a multiobjective evolutionary algorithm based on decomposition called MOEA/D to EFS for fuzzy classifier design. MOEA/D is one of the most well-known decomposition-based EMO algorithms. The key idea is to divide a multiobjective optimization problem into a number of single-objective problems using a set of uniformly distributed weight vectors in a scalarizing function. We propose a new scalarizing function called an accuracy-oriented function (AOF) which is specialized for classifier design. We examine the effects of using AOF in MOEA/D on the search ability of our multiobjective fuzzy genetics-based machine learning (GBML). We also examine the synergy effect of MOEA/D with AOF and parallel distributed implementation of fuzzy GBML on the generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信