{"title":"一类非线性离散系统的神经网络自适应控制","authors":"S. S. Ge, G.Y. Li, T.H. Lee","doi":"10.1109/ISIC.2001.971491","DOIUrl":null,"url":null,"abstract":"In this paper, the adaptive control problem is studied for a class of discrete-time unknown nonlinear systems with general relative degree in the presence of bounded disturbances. To derive the feedback control, a causal state-space model of the plant is obtained. By using an NN observer to estimate the unavailable but predictable states of the system, a Lyapunov-based adaptive state feedback NN controller is proposed. The state feedback control avoids the possible singularity problem in adaptive nonlinear control. The closed-loop system is proven to be semi-globally uniformly ultimately bounded (SGUUB). An arbitrarily small tracking error can be achieved if the size of neural networks is chosen large enough, and the control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive control for a class of nonlinear discrete-time systems using neural networks\",\"authors\":\"S. S. Ge, G.Y. Li, T.H. Lee\",\"doi\":\"10.1109/ISIC.2001.971491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the adaptive control problem is studied for a class of discrete-time unknown nonlinear systems with general relative degree in the presence of bounded disturbances. To derive the feedback control, a causal state-space model of the plant is obtained. By using an NN observer to estimate the unavailable but predictable states of the system, a Lyapunov-based adaptive state feedback NN controller is proposed. The state feedback control avoids the possible singularity problem in adaptive nonlinear control. The closed-loop system is proven to be semi-globally uniformly ultimately bounded (SGUUB). An arbitrarily small tracking error can be achieved if the size of neural networks is chosen large enough, and the control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive control for a class of nonlinear discrete-time systems using neural networks
In this paper, the adaptive control problem is studied for a class of discrete-time unknown nonlinear systems with general relative degree in the presence of bounded disturbances. To derive the feedback control, a causal state-space model of the plant is obtained. By using an NN observer to estimate the unavailable but predictable states of the system, a Lyapunov-based adaptive state feedback NN controller is proposed. The state feedback control avoids the possible singularity problem in adaptive nonlinear control. The closed-loop system is proven to be semi-globally uniformly ultimately bounded (SGUUB). An arbitrarily small tracking error can be achieved if the size of neural networks is chosen large enough, and the control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.