基于改进粒子群算法的Muskingum模型最优参数估计

Wenchuan Wang, Y. Kang, Lin Qiu
{"title":"基于改进粒子群算法的Muskingum模型最优参数估计","authors":"Wenchuan Wang, Y. Kang, Lin Qiu","doi":"10.1109/CSO.2010.143","DOIUrl":null,"url":null,"abstract":"The accurate parameter estimation for Muskingum model is to be useful to give the flood forecasting for flood control in water resources planning and management. Although some methods have been used to estimate the parameters for Muskingum model, an efficient method for parameter estimation in the calibration process is still lacking. In order to reduce the computational amount and improve the computational precision for parameter estimation, a modified particle swarm algorithm (MPSO) is presented for parameter optimization of Muskingum model. The technique found the best parameter values compared to previous results in terms of the sum of least residual absolute value. Empirical results that involve historical data from existed paper reveal the proposed MPSO outperforms other approaches in the literature.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimal Parameter Estimation for Muskingum Model Using a Modified Particle Swarm Algorithm\",\"authors\":\"Wenchuan Wang, Y. Kang, Lin Qiu\",\"doi\":\"10.1109/CSO.2010.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate parameter estimation for Muskingum model is to be useful to give the flood forecasting for flood control in water resources planning and management. Although some methods have been used to estimate the parameters for Muskingum model, an efficient method for parameter estimation in the calibration process is still lacking. In order to reduce the computational amount and improve the computational precision for parameter estimation, a modified particle swarm algorithm (MPSO) is presented for parameter optimization of Muskingum model. The technique found the best parameter values compared to previous results in terms of the sum of least residual absolute value. Empirical results that involve historical data from existed paper reveal the proposed MPSO outperforms other approaches in the literature.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Muskingum模型参数的准确估计为水资源规划和管理中的防洪预报提供了依据。虽然已经使用了一些方法来估计Muskingum模型的参数,但仍然缺乏一种有效的方法来估计校准过程中的参数。为了减少参数估计的计算量,提高参数估计的计算精度,提出了一种改进的粒子群算法(MPSO)用于Muskingum模型的参数优化。该方法根据最小残差绝对值的和找到了与以往结果相比的最佳参数值。涉及现有论文历史数据的实证结果表明,所提出的MPSO优于文献中的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Parameter Estimation for Muskingum Model Using a Modified Particle Swarm Algorithm
The accurate parameter estimation for Muskingum model is to be useful to give the flood forecasting for flood control in water resources planning and management. Although some methods have been used to estimate the parameters for Muskingum model, an efficient method for parameter estimation in the calibration process is still lacking. In order to reduce the computational amount and improve the computational precision for parameter estimation, a modified particle swarm algorithm (MPSO) is presented for parameter optimization of Muskingum model. The technique found the best parameter values compared to previous results in terms of the sum of least residual absolute value. Empirical results that involve historical data from existed paper reveal the proposed MPSO outperforms other approaches in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信