分数阶Fisher方程的Laplace-Adomian分解分析方法

R. K. Bairwa, Priyanka, Soniya Bairwa, Sanjeev Tyagi
{"title":"分数阶Fisher方程的Laplace-Adomian分解分析方法","authors":"R. K. Bairwa, Priyanka, Soniya Bairwa, Sanjeev Tyagi","doi":"10.22457/apam.v26n2a02885","DOIUrl":null,"url":null,"abstract":"This article implements the Laplace-Adomian decomposition method to obtain approximate analytical solutions in series form for non-linear time-fractional Fisher's equations with initial conditions. The fractional derivatives are given in the sense of Caputo. In addition, the results of this investigation are represented graphically, and they are simple yet highly accurate and compare favourably with the solutions reported in the earliest literature.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Approach to Fractional Fisher Equations by Laplace-Adomian Decomposition Method\",\"authors\":\"R. K. Bairwa, Priyanka, Soniya Bairwa, Sanjeev Tyagi\",\"doi\":\"10.22457/apam.v26n2a02885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article implements the Laplace-Adomian decomposition method to obtain approximate analytical solutions in series form for non-linear time-fractional Fisher's equations with initial conditions. The fractional derivatives are given in the sense of Caputo. In addition, the results of this investigation are represented graphically, and they are simple yet highly accurate and compare favourably with the solutions reported in the earliest literature.\",\"PeriodicalId\":305863,\"journal\":{\"name\":\"Annals of Pure and Applied Mathematics\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22457/apam.v26n2a02885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v26n2a02885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用Laplace-Adomian分解方法,得到具有初始条件的非线性时间分数型Fisher方程的级数近似解析解。分数阶导数是在卡普托意义上给出的。此外,本调查的结果以图形形式表示,它们简单但高度准确,与最早文献中报道的解决方案相比较有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Approach to Fractional Fisher Equations by Laplace-Adomian Decomposition Method
This article implements the Laplace-Adomian decomposition method to obtain approximate analytical solutions in series form for non-linear time-fractional Fisher's equations with initial conditions. The fractional derivatives are given in the sense of Caputo. In addition, the results of this investigation are represented graphically, and they are simple yet highly accurate and compare favourably with the solutions reported in the earliest literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信