球形不变性假设下的无线信道建模

Cheng-An Yang, K. Yao, E. Biglieri
{"title":"球形不变性假设下的无线信道建模","authors":"Cheng-An Yang, K. Yao, E. Biglieri","doi":"10.1109/ITA.2014.6804253","DOIUrl":null,"url":null,"abstract":"We look for the probability distribution of the fading envelope yielding the worst and the best performance of digital transmission in a wireless channel. We assume that the underlying fading process is spherically invariant. Using a general representation theorem for such a process in conjunction with semidefinite programming techniques, we derive the envelope densities yielding the maximum and minimum error probability P(e) of uncoded binary modulation, as well as the maximum and minimum outage probability Pout. In particular, for P(e) we show that the worst fading yields P(e) = 0.5, while if the fading process has zero mean the most benign fading has a Rayleigh density, while if its mean is nonzero it has a Rice density with the appropriate Rice coefficient K. The situation for Pout is more complicated: the worst fading yields Pout = 1, while the best fading has a Rayleigh or Rice density only for high SNR values.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling wireless channels under spherical invariance assumptions\",\"authors\":\"Cheng-An Yang, K. Yao, E. Biglieri\",\"doi\":\"10.1109/ITA.2014.6804253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We look for the probability distribution of the fading envelope yielding the worst and the best performance of digital transmission in a wireless channel. We assume that the underlying fading process is spherically invariant. Using a general representation theorem for such a process in conjunction with semidefinite programming techniques, we derive the envelope densities yielding the maximum and minimum error probability P(e) of uncoded binary modulation, as well as the maximum and minimum outage probability Pout. In particular, for P(e) we show that the worst fading yields P(e) = 0.5, while if the fading process has zero mean the most benign fading has a Rayleigh density, while if its mean is nonzero it has a Rice density with the appropriate Rice coefficient K. The situation for Pout is more complicated: the worst fading yields Pout = 1, while the best fading has a Rayleigh or Rice density only for high SNR values.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们寻找在无线信道中产生最差和最佳数字传输性能的衰落包络的概率分布。我们假设潜在的衰落过程是球不变性的。利用这种过程的一般表示定理,结合半定规划技术,我们推导出产生无编码二进制调制的最大和最小错误概率P(e)以及最大和最小中断概率Pout的包络密度。特别是,对于P(e),我们发现最坏的衰落产生P(e) = 0.5,而如果衰落过程的平均值为零,则最良性的衰落具有瑞利密度,而如果其平均值非零,则具有适当的Rice系数k的Rice密度。对于Pout,情况更为复杂:最坏的衰落产生Pout = 1,而最佳衰落只有在高信噪比值时才具有瑞利或Rice密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling wireless channels under spherical invariance assumptions
We look for the probability distribution of the fading envelope yielding the worst and the best performance of digital transmission in a wireless channel. We assume that the underlying fading process is spherically invariant. Using a general representation theorem for such a process in conjunction with semidefinite programming techniques, we derive the envelope densities yielding the maximum and minimum error probability P(e) of uncoded binary modulation, as well as the maximum and minimum outage probability Pout. In particular, for P(e) we show that the worst fading yields P(e) = 0.5, while if the fading process has zero mean the most benign fading has a Rayleigh density, while if its mean is nonzero it has a Rice density with the appropriate Rice coefficient K. The situation for Pout is more complicated: the worst fading yields Pout = 1, while the best fading has a Rayleigh or Rice density only for high SNR values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信