矩阵计算中蒙特卡罗稀疏近似逆的可扩展性

J. Strassburg, V. Alexandrov
{"title":"矩阵计算中蒙特卡罗稀疏近似逆的可扩展性","authors":"J. Strassburg, V. Alexandrov","doi":"10.1145/2530268.2530274","DOIUrl":null,"url":null,"abstract":"This paper presents a Monte Carlo SPAI pre-conditioner. In contrast to the standard deterministic SPAI pre-conditioners that use the Frobenius norm, a Monte Carlo alternative that relies on the use of Markov Chain Monte Carlo (MCMC) methods to compute a rough matrix inverse (MI) is given. Monte Carlo methods enable a quick rough estimate of the non-zero elements of the inverse matrix with a given precision and certain probability. The advantage of this method is that the same approach is applied to sparse and dense matrices and that complexity of the Monte Carlo matrix inversion is linear of the size of the matrix. The behaviour of the proposed algorithm is studied, its performance is investigated and a comparison with the standard deterministic SPAI, as well as the optimized and parallel MSPAI version is made. Further Monte Carlo SPAI and MSPAI are used for solving systems of linear algebraic equations (SLAE) using BiCGSTAB and a comparison of the results is made.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On scalability behaviour of Monte Carlo sparse approximate inverse for matrix computations\",\"authors\":\"J. Strassburg, V. Alexandrov\",\"doi\":\"10.1145/2530268.2530274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Monte Carlo SPAI pre-conditioner. In contrast to the standard deterministic SPAI pre-conditioners that use the Frobenius norm, a Monte Carlo alternative that relies on the use of Markov Chain Monte Carlo (MCMC) methods to compute a rough matrix inverse (MI) is given. Monte Carlo methods enable a quick rough estimate of the non-zero elements of the inverse matrix with a given precision and certain probability. The advantage of this method is that the same approach is applied to sparse and dense matrices and that complexity of the Monte Carlo matrix inversion is linear of the size of the matrix. The behaviour of the proposed algorithm is studied, its performance is investigated and a comparison with the standard deterministic SPAI, as well as the optimized and parallel MSPAI version is made. Further Monte Carlo SPAI and MSPAI are used for solving systems of linear algebraic equations (SLAE) using BiCGSTAB and a comparison of the results is made.\",\"PeriodicalId\":259517,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Scala\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Scala\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2530268.2530274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2530268.2530274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种蒙特卡罗SPAI预调节器。与使用Frobenius范数的标准确定性SPAI预调节器相反,给出了一种依赖于使用马尔可夫链蒙特卡罗(MCMC)方法来计算粗糙矩阵逆(MI)的蒙特卡罗替代方法。蒙特卡罗方法能够以给定的精度和一定的概率对逆矩阵的非零元素进行快速粗略估计。这种方法的优点是同样的方法适用于稀疏矩阵和密集矩阵,并且蒙特卡罗矩阵反演的复杂度与矩阵的大小成线性关系。研究了该算法的行为,对其性能进行了研究,并与标准确定性SPAI进行了比较,并给出了优化后的并行MSPAI版本。进一步将Monte Carlo SPAI和MSPAI应用于BiCGSTAB求解线性代数方程组(SLAE),并对结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On scalability behaviour of Monte Carlo sparse approximate inverse for matrix computations
This paper presents a Monte Carlo SPAI pre-conditioner. In contrast to the standard deterministic SPAI pre-conditioners that use the Frobenius norm, a Monte Carlo alternative that relies on the use of Markov Chain Monte Carlo (MCMC) methods to compute a rough matrix inverse (MI) is given. Monte Carlo methods enable a quick rough estimate of the non-zero elements of the inverse matrix with a given precision and certain probability. The advantage of this method is that the same approach is applied to sparse and dense matrices and that complexity of the Monte Carlo matrix inversion is linear of the size of the matrix. The behaviour of the proposed algorithm is studied, its performance is investigated and a comparison with the standard deterministic SPAI, as well as the optimized and parallel MSPAI version is made. Further Monte Carlo SPAI and MSPAI are used for solving systems of linear algebraic equations (SLAE) using BiCGSTAB and a comparison of the results is made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信