{"title":"光学3D纳米制造:绘图还是生长?(会议)","authors":"S. Kawata","doi":"10.1117/12.2236681","DOIUrl":null,"url":null,"abstract":"Conventional nanotechnology based on the lithography and scanning probe microscopy is limited to 2D fabrication and modification. Here, I will talk about the method for 3D laser fabrication with two-photon polymerization [1], two-photon isomerization [2], and two-photon photo-reduction [3]. Self-growth technology, such as self-grown fiber structures of polymer [4] and self-grown metallic fractal metamaterials structures [5] will be also discussed. [1] S. Kawata, et. al, Nature 412, 697−698, 2001. [2] S. Kawata and Y. Kawata, Chem Rev. 88, 083110, 2006. [3] Y. -Y. Cao, et. al., Small 5, 1144-1148, 2009 [4] S. Shoji and S. Kawata, Appl. Phys. Lett. 75, 737-739, 1999. [5] N. Takeyasu, N. Nishimura, S. Kawata, submitted.","PeriodicalId":314691,"journal":{"name":"SPIE LASE","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical 3D Nano-fabrication: Drawing or Growing? (Conference Presentation)\",\"authors\":\"S. Kawata\",\"doi\":\"10.1117/12.2236681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional nanotechnology based on the lithography and scanning probe microscopy is limited to 2D fabrication and modification. Here, I will talk about the method for 3D laser fabrication with two-photon polymerization [1], two-photon isomerization [2], and two-photon photo-reduction [3]. Self-growth technology, such as self-grown fiber structures of polymer [4] and self-grown metallic fractal metamaterials structures [5] will be also discussed. [1] S. Kawata, et. al, Nature 412, 697−698, 2001. [2] S. Kawata and Y. Kawata, Chem Rev. 88, 083110, 2006. [3] Y. -Y. Cao, et. al., Small 5, 1144-1148, 2009 [4] S. Shoji and S. Kawata, Appl. Phys. Lett. 75, 737-739, 1999. [5] N. Takeyasu, N. Nishimura, S. Kawata, submitted.\",\"PeriodicalId\":314691,\"journal\":{\"name\":\"SPIE LASE\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE LASE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2236681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE LASE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2236681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于光刻和扫描探针显微镜的传统纳米技术仅限于二维制造和修改。在这里,我将讨论双光子聚合[1]、双光子异构化[2]和双光子光还原[3]的三维激光制造方法。还将讨论自生长技术,如自生长聚合物纤维结构[4]和自生长金属分形超材料结构[5]。[1]李志强,等。中国生物医学工程学报,2004,32(1):1 ~ 6。[2]陈志强,陈志强,陈志强,2006。[3] y . -y .;[4]肖志强,高志强,陈志强,等。理论物理。通讯75,737- 739,1999。[5]刘志强,陈志强,陈志强。
Optical 3D Nano-fabrication: Drawing or Growing? (Conference Presentation)
Conventional nanotechnology based on the lithography and scanning probe microscopy is limited to 2D fabrication and modification. Here, I will talk about the method for 3D laser fabrication with two-photon polymerization [1], two-photon isomerization [2], and two-photon photo-reduction [3]. Self-growth technology, such as self-grown fiber structures of polymer [4] and self-grown metallic fractal metamaterials structures [5] will be also discussed. [1] S. Kawata, et. al, Nature 412, 697−698, 2001. [2] S. Kawata and Y. Kawata, Chem Rev. 88, 083110, 2006. [3] Y. -Y. Cao, et. al., Small 5, 1144-1148, 2009 [4] S. Shoji and S. Kawata, Appl. Phys. Lett. 75, 737-739, 1999. [5] N. Takeyasu, N. Nishimura, S. Kawata, submitted.