LAV最佳子集过程中的惩罚计算和分支规则

R. Armstrong, P. Beck
{"title":"LAV最佳子集过程中的惩罚计算和分支规则","authors":"R. Armstrong, P. Beck","doi":"10.1002/NAV.3800320305","DOIUrl":null,"url":null,"abstract":"Least absolute value (LAV) regression has become a widely accepted alternative to least squares regression. This has come about as the result of advancements in statistical theory and computational procedures to obtain LAV estimates. Computer codes are currently available to solve a wide range of LAV problems including the best subset regression. The purpose of this article is to study the use of penalty calculations and other branching rules in developing the solution tree for the best subset LAV regression.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Penalty calculations and branching rules in a LAV best subset procedure\",\"authors\":\"R. Armstrong, P. Beck\",\"doi\":\"10.1002/NAV.3800320305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Least absolute value (LAV) regression has become a widely accepted alternative to least squares regression. This has come about as the result of advancements in statistical theory and computational procedures to obtain LAV estimates. Computer codes are currently available to solve a wide range of LAV problems including the best subset regression. The purpose of this article is to study the use of penalty calculations and other branching rules in developing the solution tree for the best subset LAV regression.\",\"PeriodicalId\":431817,\"journal\":{\"name\":\"Naval Research Logistics Quarterly\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/NAV.3800320305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800320305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最小绝对值回归(LAV)已成为一种被广泛接受的替代最小二乘回归的方法。这是统计理论和计算程序取得LAV估计的进步的结果。计算机代码目前可用于解决广泛的LAV问题,包括最佳子集回归。本文的目的是研究惩罚计算和其他分支规则在开发最佳子集LAV回归的解决方案树中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penalty calculations and branching rules in a LAV best subset procedure
Least absolute value (LAV) regression has become a widely accepted alternative to least squares regression. This has come about as the result of advancements in statistical theory and computational procedures to obtain LAV estimates. Computer codes are currently available to solve a wide range of LAV problems including the best subset regression. The purpose of this article is to study the use of penalty calculations and other branching rules in developing the solution tree for the best subset LAV regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信