模糊神经逻辑系统

L. Hsu, H. H. Teh, P. Wang, S. Chan, K. Loe
{"title":"模糊神经逻辑系统","authors":"L. Hsu, H. H. Teh, P. Wang, S. Chan, K. Loe","doi":"10.1109/IJCNN.1992.287128","DOIUrl":null,"url":null,"abstract":"A realization of fuzzy logic by a neural network is described. Each node in the network represents a premise or a conclusion. Let x be a member of the universal set, and let A be a node in the network. The value of activation of node A is taken to be the value of the membership function at point x, m/sub A/(x). A logical operation is defined by a set of weights which are independent of x. Given any value of x, a preprocessor will determine the values of the membership function for all the premises that correspond to the input nodes. These are treated as input to the network. A propagation algorithm is used to emulate the inference process. When the network stabilizes, the value of activation at an output node represents the value of the membership function that indicates the degree to which the given conclusion is true. Weight assignment for the standard logical operations is discussed. It is also shown that the scheme makes it possible to define more general logical operations.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fuzzy neural-logic system\",\"authors\":\"L. Hsu, H. H. Teh, P. Wang, S. Chan, K. Loe\",\"doi\":\"10.1109/IJCNN.1992.287128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A realization of fuzzy logic by a neural network is described. Each node in the network represents a premise or a conclusion. Let x be a member of the universal set, and let A be a node in the network. The value of activation of node A is taken to be the value of the membership function at point x, m/sub A/(x). A logical operation is defined by a set of weights which are independent of x. Given any value of x, a preprocessor will determine the values of the membership function for all the premises that correspond to the input nodes. These are treated as input to the network. A propagation algorithm is used to emulate the inference process. When the network stabilizes, the value of activation at an output node represents the value of the membership function that indicates the degree to which the given conclusion is true. Weight assignment for the standard logical operations is discussed. It is also shown that the scheme makes it possible to define more general logical operations.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.287128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

描述了一种用神经网络实现模糊逻辑的方法。网络中的每个节点代表一个前提或结论。设x是全称集合中的一个成员,设a是网络中的一个节点。取节点A的激活值为隶属函数在点x处的值m/下标A/(x)。逻辑运算是由一组独立于x的权重定义的。给定x的任何值,预处理器将确定与输入节点对应的所有前提的隶属函数的值。这些被视为网络的输入。采用传播算法模拟推理过程。当网络稳定时,输出节点上的激活值表示隶属函数的值,该隶属函数表示给定结论为真的程度。讨论了标准逻辑运算的权重分配。还表明,该方案使得定义更一般的逻辑运算成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy neural-logic system
A realization of fuzzy logic by a neural network is described. Each node in the network represents a premise or a conclusion. Let x be a member of the universal set, and let A be a node in the network. The value of activation of node A is taken to be the value of the membership function at point x, m/sub A/(x). A logical operation is defined by a set of weights which are independent of x. Given any value of x, a preprocessor will determine the values of the membership function for all the premises that correspond to the input nodes. These are treated as input to the network. A propagation algorithm is used to emulate the inference process. When the network stabilizes, the value of activation at an output node represents the value of the membership function that indicates the degree to which the given conclusion is true. Weight assignment for the standard logical operations is discussed. It is also shown that the scheme makes it possible to define more general logical operations.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信