基于混合遗传算法的货车后挡板模糊神经网络控制

W. Tao
{"title":"基于混合遗传算法的货车后挡板模糊神经网络控制","authors":"W. Tao","doi":"10.1109/ICIA.2004.1373309","DOIUrl":null,"url":null,"abstract":"In this paper, a kind of fuzzy neural network based on hybrid genetic algorithms is proposed. Hybrid genetic algorithm is presented to train the fuzzy neural network. The hybrid genetic algorithm improved normal genetic algorithm. The BP algorithm is added to genetic algorithm. In particularly, the global convergent characteristic of the genetic algorithm is used to find the possible universal optimum, and the great feature of the BP algorithm, that is, error descend in the direction of grads, is used to fast search about the optimum. Thus, the fast learning capability and an accurate approximation ability are obtained. The fuzzy neural network is used to the control problem of truck backer-upper. The simulation results show that it achieves better control effect.","PeriodicalId":297178,"journal":{"name":"International Conference on Information Acquisition, 2004. Proceedings.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fuzzy neural network control of truck backer-upper using hybrid genetic algorithms\",\"authors\":\"W. Tao\",\"doi\":\"10.1109/ICIA.2004.1373309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a kind of fuzzy neural network based on hybrid genetic algorithms is proposed. Hybrid genetic algorithm is presented to train the fuzzy neural network. The hybrid genetic algorithm improved normal genetic algorithm. The BP algorithm is added to genetic algorithm. In particularly, the global convergent characteristic of the genetic algorithm is used to find the possible universal optimum, and the great feature of the BP algorithm, that is, error descend in the direction of grads, is used to fast search about the optimum. Thus, the fast learning capability and an accurate approximation ability are obtained. The fuzzy neural network is used to the control problem of truck backer-upper. The simulation results show that it achieves better control effect.\",\"PeriodicalId\":297178,\"journal\":{\"name\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIA.2004.1373309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Acquisition, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2004.1373309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于混合遗传算法的模糊神经网络。采用混合遗传算法对模糊神经网络进行训练。混合遗传算法是对普通遗传算法的改进。将BP算法加入到遗传算法中。其中,利用遗传算法的全局收敛性来寻找可能的通用最优解,利用BP算法的误差沿梯度方向下降的特点来快速搜索最优解。从而获得了快速的学习能力和精确的逼近能力。将模糊神经网络应用于卡车后挡板的控制问题。仿真结果表明,该方法取得了较好的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy neural network control of truck backer-upper using hybrid genetic algorithms
In this paper, a kind of fuzzy neural network based on hybrid genetic algorithms is proposed. Hybrid genetic algorithm is presented to train the fuzzy neural network. The hybrid genetic algorithm improved normal genetic algorithm. The BP algorithm is added to genetic algorithm. In particularly, the global convergent characteristic of the genetic algorithm is used to find the possible universal optimum, and the great feature of the BP algorithm, that is, error descend in the direction of grads, is used to fast search about the optimum. Thus, the fast learning capability and an accurate approximation ability are obtained. The fuzzy neural network is used to the control problem of truck backer-upper. The simulation results show that it achieves better control effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信