基于agent的强化学习算法的交易记录克隆策略

Chiao-Ting Chen, An-Pin Chen, Szu-Hao Huang
{"title":"基于agent的强化学习算法的交易记录克隆策略","authors":"Chiao-Ting Chen, An-Pin Chen, Szu-Hao Huang","doi":"10.1109/AGENTS.2018.8460078","DOIUrl":null,"url":null,"abstract":"Investment decision making is considered as a series of complicated processes, which are difficult to be analyzed and imitated. Given large amounts of trading records with rich expert knowledge in financial domain, extracting its original decision logics and cloning the trading strategies are also quite challenging. In this paper, an agent-based reinforcement learning (RL) system is proposed to mimic professional trading strategies. The concept of continuous Markov decision process (MDP) in RL is similar to the trading decision making in financial time series data. With the specific-designed RL components, including states, actions, and rewards for financial applications, policy gradient method can successfully imitate the expert's strategies. In order to improve the convergence of RL agent in such highly dynamic environment, a pre-trained model based on supervised learning is transferred to the deep policy networks. The experimental results show that the proposed system can reproduce around eighty percent trading decisions both in training and testing stages. With the discussion of the tradeoff between explorations and model updating, this paper tried to fine-tuning the system parameters to get reasonable results. Finally, an advanced strategy is proposed to dynamically adjust the number of explorations in each episode to achieve better results.","PeriodicalId":248901,"journal":{"name":"2018 IEEE International Conference on Agents (ICA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Cloning Strategies from Trading Records using Agent-based Reinforcement Learning Algorithm\",\"authors\":\"Chiao-Ting Chen, An-Pin Chen, Szu-Hao Huang\",\"doi\":\"10.1109/AGENTS.2018.8460078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investment decision making is considered as a series of complicated processes, which are difficult to be analyzed and imitated. Given large amounts of trading records with rich expert knowledge in financial domain, extracting its original decision logics and cloning the trading strategies are also quite challenging. In this paper, an agent-based reinforcement learning (RL) system is proposed to mimic professional trading strategies. The concept of continuous Markov decision process (MDP) in RL is similar to the trading decision making in financial time series data. With the specific-designed RL components, including states, actions, and rewards for financial applications, policy gradient method can successfully imitate the expert's strategies. In order to improve the convergence of RL agent in such highly dynamic environment, a pre-trained model based on supervised learning is transferred to the deep policy networks. The experimental results show that the proposed system can reproduce around eighty percent trading decisions both in training and testing stages. With the discussion of the tradeoff between explorations and model updating, this paper tried to fine-tuning the system parameters to get reasonable results. Finally, an advanced strategy is proposed to dynamically adjust the number of explorations in each episode to achieve better results.\",\"PeriodicalId\":248901,\"journal\":{\"name\":\"2018 IEEE International Conference on Agents (ICA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Agents (ICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AGENTS.2018.8460078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Agents (ICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGENTS.2018.8460078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

投资决策被认为是一系列复杂的过程,是难以分析和模仿的。由于金融领域中存在大量的交易记录和丰富的专家知识,提取交易记录的原始决策逻辑和克隆交易策略也具有很大的挑战性。本文提出了一种基于智能体的强化学习(RL)系统来模拟专业交易策略。RL中的连续马尔可夫决策过程(MDP)的概念类似于金融时间序列数据中的交易决策。通过特定设计的RL组件,包括金融应用的状态、行动和奖励,策略梯度方法可以成功地模仿专家的策略。为了提高RL智能体在高动态环境下的收敛性,将基于监督学习的预训练模型转移到深度策略网络中。实验结果表明,该系统在训练和测试阶段都能再现80%左右的交易决策。通过对探索和模型更新之间权衡的讨论,本文尝试对系统参数进行微调以获得合理的结果。最后,提出了一种先进的策略来动态调整每集的探索次数,以达到更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloning Strategies from Trading Records using Agent-based Reinforcement Learning Algorithm
Investment decision making is considered as a series of complicated processes, which are difficult to be analyzed and imitated. Given large amounts of trading records with rich expert knowledge in financial domain, extracting its original decision logics and cloning the trading strategies are also quite challenging. In this paper, an agent-based reinforcement learning (RL) system is proposed to mimic professional trading strategies. The concept of continuous Markov decision process (MDP) in RL is similar to the trading decision making in financial time series data. With the specific-designed RL components, including states, actions, and rewards for financial applications, policy gradient method can successfully imitate the expert's strategies. In order to improve the convergence of RL agent in such highly dynamic environment, a pre-trained model based on supervised learning is transferred to the deep policy networks. The experimental results show that the proposed system can reproduce around eighty percent trading decisions both in training and testing stages. With the discussion of the tradeoff between explorations and model updating, this paper tried to fine-tuning the system parameters to get reasonable results. Finally, an advanced strategy is proposed to dynamically adjust the number of explorations in each episode to achieve better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信