深度学习中不同优化器对分类结果的影响

Hao Li, Chengui Guo, Zeweiyi Gong, Zhanguoi Cao, Feng Shen
{"title":"深度学习中不同优化器对分类结果的影响","authors":"Hao Li, Chengui Guo, Zeweiyi Gong, Zhanguoi Cao, Feng Shen","doi":"10.1109/ICECE54449.2021.9674293","DOIUrl":null,"url":null,"abstract":"In satellite remote sensing technology, hyperspectral images not only have the same spatial information as traditional RGB images and hyperspectral images, but also have rich spectral information. Deep learning can connect the training data and label data through nonlinear mapping to extract different levels of information features from hyperspectral data. Based on the remote sensing data sets of Indian pine, saline field and Pavia University, this paper uses the Hybridsn model to compare the classification performance of different optimizers. The experimental results show that the adaptive time estimation optimizer makes the model show good classification performance in the classification process.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Different Optimizers on Classification Results in Deep Learning\",\"authors\":\"Hao Li, Chengui Guo, Zeweiyi Gong, Zhanguoi Cao, Feng Shen\",\"doi\":\"10.1109/ICECE54449.2021.9674293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In satellite remote sensing technology, hyperspectral images not only have the same spatial information as traditional RGB images and hyperspectral images, but also have rich spectral information. Deep learning can connect the training data and label data through nonlinear mapping to extract different levels of information features from hyperspectral data. Based on the remote sensing data sets of Indian pine, saline field and Pavia University, this paper uses the Hybridsn model to compare the classification performance of different optimizers. The experimental results show that the adaptive time estimation optimizer makes the model show good classification performance in the classification process.\",\"PeriodicalId\":166178,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE54449.2021.9674293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在卫星遥感技术中,高光谱图像不仅具有与传统RGB图像和高光谱图像相同的空间信息,而且具有丰富的光谱信息。深度学习可以通过非线性映射将训练数据和标注数据连接起来,从高光谱数据中提取不同层次的信息特征。基于印度松林、盐碱地和帕维亚大学的遥感数据集,采用Hybridsn模型比较了不同优化器的分类性能。实验结果表明,自适应时间估计优化器使模型在分类过程中表现出良好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Different Optimizers on Classification Results in Deep Learning
In satellite remote sensing technology, hyperspectral images not only have the same spatial information as traditional RGB images and hyperspectral images, but also have rich spectral information. Deep learning can connect the training data and label data through nonlinear mapping to extract different levels of information features from hyperspectral data. Based on the remote sensing data sets of Indian pine, saline field and Pavia University, this paper uses the Hybridsn model to compare the classification performance of different optimizers. The experimental results show that the adaptive time estimation optimizer makes the model show good classification performance in the classification process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信