三次多项式的动态几何

G. Aghekyan, K. Sahakyan
{"title":"三次多项式的动态几何","authors":"G. Aghekyan, K. Sahakyan","doi":"10.13189/UJAM.2013.010401","DOIUrl":null,"url":null,"abstract":"In the paper we consider the dynamic behavior of the critical points of some cubic polynomials, with the motion of one of the roots of the polynomial along a given trajectory. Some dynamic property of polynomials is investigated. The statements about traces of critical points of some polynomials are proved. The equations of curves, on which critical points move, are obtained.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Geometry of Cubic Polynomial\",\"authors\":\"G. Aghekyan, K. Sahakyan\",\"doi\":\"10.13189/UJAM.2013.010401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we consider the dynamic behavior of the critical points of some cubic polynomials, with the motion of one of the roots of the polynomial along a given trajectory. Some dynamic property of polynomials is investigated. The statements about traces of critical points of some polynomials are proved. The equations of curves, on which critical points move, are obtained.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"388 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2013.010401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2013.010401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了多项式的一个根沿给定轨迹运动时,某些三次多项式的临界点的动力学行为。研究了多项式的一些动态性质。证明了一些多项式的临界点迹的表述。得到了临界点移动的曲线方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Geometry of Cubic Polynomial
In the paper we consider the dynamic behavior of the critical points of some cubic polynomials, with the motion of one of the roots of the polynomial along a given trajectory. Some dynamic property of polynomials is investigated. The statements about traces of critical points of some polynomials are proved. The equations of curves, on which critical points move, are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信