机器学习设计一种自动调谐系统,用于并行稀疏计算的最佳压缩格式检测

O. Hamdi-Larbi, Ichrak Mehrez, T. Dufaud
{"title":"机器学习设计一种自动调谐系统,用于并行稀疏计算的最佳压缩格式检测","authors":"O. Hamdi-Larbi, Ichrak Mehrez, T. Dufaud","doi":"10.1142/s0129626421500195","DOIUrl":null,"url":null,"abstract":"Many applications in scientific computing process very large sparse matrices on parallel architectures. The presented work in this paper is a part of a project where our general aim is to develop an auto-tuner system for the selection of the best matrix compression format in the context of high-performance computing. The target smart system can automatically select the best compression format for a given sparse matrix, a numerical method processing this matrix, a parallel programming model and a target architecture. Hence, this paper describes the design and implementation of the proposed concept. We consider a case study consisting of a numerical method reduced to the sparse matrix vector product (SpMV), some compression formats, the data parallel as a programming model and, a distributed multi-core platform as a target architecture. This study allows extracting a set of important novel metrics and parameters which are relative to the considered programming model. Our metrics are used as input to a machine-learning algorithm to predict the best matrix compression format. An experimental study targeting a distributed multi-core platform and processing random and real-world matrices shows that our system can improve in average up to 7% the accuracy of the machine learning.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning to Design an Auto-tuning System for the Best Compressed Format Detection for Parallel Sparse Computations\",\"authors\":\"O. Hamdi-Larbi, Ichrak Mehrez, T. Dufaud\",\"doi\":\"10.1142/s0129626421500195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications in scientific computing process very large sparse matrices on parallel architectures. The presented work in this paper is a part of a project where our general aim is to develop an auto-tuner system for the selection of the best matrix compression format in the context of high-performance computing. The target smart system can automatically select the best compression format for a given sparse matrix, a numerical method processing this matrix, a parallel programming model and a target architecture. Hence, this paper describes the design and implementation of the proposed concept. We consider a case study consisting of a numerical method reduced to the sparse matrix vector product (SpMV), some compression formats, the data parallel as a programming model and, a distributed multi-core platform as a target architecture. This study allows extracting a set of important novel metrics and parameters which are relative to the considered programming model. Our metrics are used as input to a machine-learning algorithm to predict the best matrix compression format. An experimental study targeting a distributed multi-core platform and processing random and real-world matrices shows that our system can improve in average up to 7% the accuracy of the machine learning.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129626421500195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626421500195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学计算中的许多应用都是在并行架构上处理非常大的稀疏矩阵。本文中介绍的工作是一个项目的一部分,我们的总体目标是开发一个自动调谐系统,用于在高性能计算的背景下选择最佳的矩阵压缩格式。目标智能系统能够对给定的稀疏矩阵自动选择最佳压缩格式、矩阵的数值处理方法、并行规划模型和目标体系结构。因此,本文描述了所提出概念的设计和实现。我们考虑了一个案例研究,包括一个简化为稀疏矩阵向量积(SpMV)的数值方法,一些压缩格式,数据并行作为编程模型,以及一个分布式多核平台作为目标架构。这项研究允许提取一组重要的新指标和参数,这些指标和参数与所考虑的编程模型有关。我们的指标被用作机器学习算法的输入,以预测最佳矩阵压缩格式。一项针对分布式多核平台并处理随机和现实世界矩阵的实验研究表明,我们的系统可以将机器学习的准确率平均提高7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning to Design an Auto-tuning System for the Best Compressed Format Detection for Parallel Sparse Computations
Many applications in scientific computing process very large sparse matrices on parallel architectures. The presented work in this paper is a part of a project where our general aim is to develop an auto-tuner system for the selection of the best matrix compression format in the context of high-performance computing. The target smart system can automatically select the best compression format for a given sparse matrix, a numerical method processing this matrix, a parallel programming model and a target architecture. Hence, this paper describes the design and implementation of the proposed concept. We consider a case study consisting of a numerical method reduced to the sparse matrix vector product (SpMV), some compression formats, the data parallel as a programming model and, a distributed multi-core platform as a target architecture. This study allows extracting a set of important novel metrics and parameters which are relative to the considered programming model. Our metrics are used as input to a machine-learning algorithm to predict the best matrix compression format. An experimental study targeting a distributed multi-core platform and processing random and real-world matrices shows that our system can improve in average up to 7% the accuracy of the machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信