超几何函数

Moseley Typist, E. Peters
{"title":"超几何函数","authors":"Moseley Typist, E. Peters","doi":"10.1201/9781439864548-61","DOIUrl":null,"url":null,"abstract":"Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)","PeriodicalId":125547,"journal":{"name":"A Course of Modern Analysis","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hypergeometric Function\",\"authors\":\"Moseley Typist, E. Peters\",\"doi\":\"10.1201/9781439864548-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)\",\"PeriodicalId\":125547,\"journal\":{\"name\":\"A Course of Modern Analysis\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"A Course of Modern Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781439864548-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Course of Modern Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781439864548-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“共形场论与算子代数研讨会”笔记,2010年8月,俄勒冈。想要在解析延拓之后将Fμ和Gμ联系起来。把Fμs写成g μs系数就是“输运系数”。(1)超几何函数/方程(2)计算“基本ODE”定义的传输系数。高斯超几何方程:具有3个正则奇点{0,1,∞}的二阶ODE: z(1−z)f ' ' + [c−(1 + a+ b)z]f ' - abf = 0。最酷的是它的解,由2F1 (a, b)c;Z) = Σn≥0 (a)n(b)n (c)n Z n!(a)n = a(a+ 1)···(a+ n - 1)。将微分方程改写为F (z) = (a z + b1 - z) F (z)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hypergeometric Function
Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信