{"title":"超几何函数","authors":"Moseley Typist, E. Peters","doi":"10.1201/9781439864548-61","DOIUrl":null,"url":null,"abstract":"Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)","PeriodicalId":125547,"journal":{"name":"A Course of Modern Analysis","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hypergeometric Function\",\"authors\":\"Moseley Typist, E. Peters\",\"doi\":\"10.1201/9781439864548-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)\",\"PeriodicalId\":125547,\"journal\":{\"name\":\"A Course of Modern Analysis\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"A Course of Modern Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781439864548-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Course of Modern Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781439864548-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
“共形场论与算子代数研讨会”笔记,2010年8月,俄勒冈。想要在解析延拓之后将Fμ和Gμ联系起来。把Fμs写成g μs系数就是“输运系数”。(1)超几何函数/方程(2)计算“基本ODE”定义的传输系数。高斯超几何方程:具有3个正则奇点{0,1,∞}的二阶ODE: z(1−z)f ' ' + [c−(1 + a+ b)z]f ' - abf = 0。最酷的是它的解,由2F1 (a, b)c;Z) = Σn≥0 (a)n(b)n (c)n Z n!(a)n = a(a+ 1)···(a+ n - 1)。将微分方程改写为F (z) = (a z + b1 - z) F (z)
Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)