协同导航的海底声学通信地图

D. Horner, G. Xie
{"title":"协同导航的海底声学通信地图","authors":"D. Horner, G. Xie","doi":"10.1145/2398936.2398993","DOIUrl":null,"url":null,"abstract":"Communications play a key role in collaborative navigation algorithms. A better understanding of the ability to send and receive messages permits greater navigational flexibility and system robustness. This paper focuses on the building of an underwater acoustic communications map for collaborative navigation. The emphasis is in two areas - a local and global communications map. The local communications is defined with respect to a single destination reference point. Using a sample set of a priori signal to noise ratio acoustic modem data, Kriging techniques are used to create mean and variance map estimates. The global communications map is a compendium of local maps and is defined within a bounded survey space. Bayesian Inferencing is used for building the global map. It is based on REML parameter estimation of an anisotropic covariance function. The paper analyzes acoustic communication signal to noise datasets recently collected in Monterey Harbor, Monterey, CA and is used to demonstrate the above-described techniques.","PeriodicalId":340133,"journal":{"name":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Undersea acoustic communication maps for collaborative navigation\",\"authors\":\"D. Horner, G. Xie\",\"doi\":\"10.1145/2398936.2398993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communications play a key role in collaborative navigation algorithms. A better understanding of the ability to send and receive messages permits greater navigational flexibility and system robustness. This paper focuses on the building of an underwater acoustic communications map for collaborative navigation. The emphasis is in two areas - a local and global communications map. The local communications is defined with respect to a single destination reference point. Using a sample set of a priori signal to noise ratio acoustic modem data, Kriging techniques are used to create mean and variance map estimates. The global communications map is a compendium of local maps and is defined within a bounded survey space. Bayesian Inferencing is used for building the global map. It is based on REML parameter estimation of an anisotropic covariance function. The paper analyzes acoustic communication signal to noise datasets recently collected in Monterey Harbor, Monterey, CA and is used to demonstrate the above-described techniques.\",\"PeriodicalId\":340133,\"journal\":{\"name\":\"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2398936.2398993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2398936.2398993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通信在协同导航算法中起着关键作用。更好地理解发送和接收消息的能力,可以获得更大的导航灵活性和系统健壮性。本文主要研究了协同导航的水声通信图的构建。重点放在两个方面——本地和全球通讯地图。本地通信是根据单个目标参考点定义的。利用先验信噪比声学调制解调器数据的样本集,使用克里格技术创建均值和方差图估计。全球通信地图是本地地图的汇编,并在有限的测量空间内定义。贝叶斯推理用于构建全局地图。该方法基于各向异性协方差函数的REML参数估计。本文分析了最近在加利福尼亚州蒙特雷港收集的声通信信噪比数据集,并用于演示上述技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undersea acoustic communication maps for collaborative navigation
Communications play a key role in collaborative navigation algorithms. A better understanding of the ability to send and receive messages permits greater navigational flexibility and system robustness. This paper focuses on the building of an underwater acoustic communications map for collaborative navigation. The emphasis is in two areas - a local and global communications map. The local communications is defined with respect to a single destination reference point. Using a sample set of a priori signal to noise ratio acoustic modem data, Kriging techniques are used to create mean and variance map estimates. The global communications map is a compendium of local maps and is defined within a bounded survey space. Bayesian Inferencing is used for building the global map. It is based on REML parameter estimation of an anisotropic covariance function. The paper analyzes acoustic communication signal to noise datasets recently collected in Monterey Harbor, Monterey, CA and is used to demonstrate the above-described techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信