基于稀疏反卷积的语音分析最小1范数极点零建模

Liming Shi, J. Jensen, M. G. Christensen
{"title":"基于稀疏反卷积的语音分析最小1范数极点零建模","authors":"Liming Shi, J. Jensen, M. G. Christensen","doi":"10.1109/ICASSP.2017.7952252","DOIUrl":null,"url":null,"abstract":"In this paper, we present a speech analysis method based on sparse pole-zero modeling of speech. Instead of using the all-pole model to approximate the speech production filter, a pole-zero model is used for the combined effect of the vocal tract; radiation at the lips and the glottal pulse shape. Moreover, to consider the spiky excitation form of the pulse train during voiced speech, the modeling parameters and sparse residuals are estimated in an iterative fashion using a least 1-norm pole-zero with sparse deconvolution algorithm. Compared with the conventional two-stage least squares pole-zero, linear prediction and sparse linear prediction methods, experimental results show that the proposed speech analysis method has lower spectral distortion, higher reconstruction SNR and sparser residuals.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Least 1-norm pole-zero modeling with sparse deconvolution for speech analysis\",\"authors\":\"Liming Shi, J. Jensen, M. G. Christensen\",\"doi\":\"10.1109/ICASSP.2017.7952252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a speech analysis method based on sparse pole-zero modeling of speech. Instead of using the all-pole model to approximate the speech production filter, a pole-zero model is used for the combined effect of the vocal tract; radiation at the lips and the glottal pulse shape. Moreover, to consider the spiky excitation form of the pulse train during voiced speech, the modeling parameters and sparse residuals are estimated in an iterative fashion using a least 1-norm pole-zero with sparse deconvolution algorithm. Compared with the conventional two-stage least squares pole-zero, linear prediction and sparse linear prediction methods, experimental results show that the proposed speech analysis method has lower spectral distortion, higher reconstruction SNR and sparser residuals.\",\"PeriodicalId\":118243,\"journal\":{\"name\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2017.7952252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于稀疏极点零建模的语音分析方法。代替使用全极点模型来近似语音产生滤波器,使用极点-零模型来模拟声道的综合效应;唇部的辐射和声门的脉冲形状。此外,为了考虑浊音过程中脉冲序列的尖尖激励形式,采用最小1范数极点零稀疏反卷积算法以迭代方式估计建模参数和稀疏残差。实验结果表明,与传统的两阶段最小二乘极点零预测、线性预测和稀疏线性预测方法相比,本文提出的语音分析方法具有更低的频谱失真、更高的重建信噪比和更稀疏的残差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Least 1-norm pole-zero modeling with sparse deconvolution for speech analysis
In this paper, we present a speech analysis method based on sparse pole-zero modeling of speech. Instead of using the all-pole model to approximate the speech production filter, a pole-zero model is used for the combined effect of the vocal tract; radiation at the lips and the glottal pulse shape. Moreover, to consider the spiky excitation form of the pulse train during voiced speech, the modeling parameters and sparse residuals are estimated in an iterative fashion using a least 1-norm pole-zero with sparse deconvolution algorithm. Compared with the conventional two-stage least squares pole-zero, linear prediction and sparse linear prediction methods, experimental results show that the proposed speech analysis method has lower spectral distortion, higher reconstruction SNR and sparser residuals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信