利用相关滤波器对两类不同速度的多目标进行自动识别

Andres Rodriguez, B. Kumar
{"title":"利用相关滤波器对两类不同速度的多目标进行自动识别","authors":"Andres Rodriguez, B. Kumar","doi":"10.1109/ICIP.2010.5651040","DOIUrl":null,"url":null,"abstract":"Correlation filters (CFs) can detect multiple targets in one scene making them well-suited for automatic target recognition (ATR) applications. We present a method to efficiently compute the Quadratic CF (QCF) capable of detecting multiple targets from two classes. We use a Kalman filter framework to combine information from successive correlation outputs in a probabilistic way integrating the ATR tasks of detection, recognition, and tracking.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Automatic target recognition of multiple targets from two classes with varying velocities using correlation filters\",\"authors\":\"Andres Rodriguez, B. Kumar\",\"doi\":\"10.1109/ICIP.2010.5651040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correlation filters (CFs) can detect multiple targets in one scene making them well-suited for automatic target recognition (ATR) applications. We present a method to efficiently compute the Quadratic CF (QCF) capable of detecting multiple targets from two classes. We use a Kalman filter framework to combine information from successive correlation outputs in a probabilistic way integrating the ATR tasks of detection, recognition, and tracking.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5651040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

相关滤波器(CFs)可以在一个场景中检测多个目标,使其非常适合于自动目标识别(ATR)应用。提出了一种能够从两类中检测出多个目标的二次型CF (QCF)的高效计算方法。我们使用卡尔曼滤波框架以概率的方式组合来自连续相关输出的信息,整合ATR任务的检测、识别和跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic target recognition of multiple targets from two classes with varying velocities using correlation filters
Correlation filters (CFs) can detect multiple targets in one scene making them well-suited for automatic target recognition (ATR) applications. We present a method to efficiently compute the Quadratic CF (QCF) capable of detecting multiple targets from two classes. We use a Kalman filter framework to combine information from successive correlation outputs in a probabilistic way integrating the ATR tasks of detection, recognition, and tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信