结合视觉CNN特征和子地图的SLAM闭环检测

Hao Qin, May Huang, Jian Cao, Xing Zhang
{"title":"结合视觉CNN特征和子地图的SLAM闭环检测","authors":"Hao Qin, May Huang, Jian Cao, Xing Zhang","doi":"10.1109/ICCAR.2018.8384713","DOIUrl":null,"url":null,"abstract":"Using simultaneous localization and mapping (SLAM) with 2D LIDAR is an efficient approach for robots to build a floor plan, but it is sensitive to the environment. For improving the accuracy, we match LIDAR data with sub-maps. Furthermore, we convert LIDAR data to images and merge with camera data for image matching. Combining the two approaches, we achieve robust and accurate loop closure detection. The descriptors generated by CNN model will be used as features to image matching for accuracy improvement.","PeriodicalId":106624,"journal":{"name":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","volume":"288 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Loop closure detection in SLAM by combining visual CNN features and submaps\",\"authors\":\"Hao Qin, May Huang, Jian Cao, Xing Zhang\",\"doi\":\"10.1109/ICCAR.2018.8384713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using simultaneous localization and mapping (SLAM) with 2D LIDAR is an efficient approach for robots to build a floor plan, but it is sensitive to the environment. For improving the accuracy, we match LIDAR data with sub-maps. Furthermore, we convert LIDAR data to images and merge with camera data for image matching. Combining the two approaches, we achieve robust and accurate loop closure detection. The descriptors generated by CNN model will be used as features to image matching for accuracy improvement.\",\"PeriodicalId\":106624,\"journal\":{\"name\":\"2018 4th International Conference on Control, Automation and Robotics (ICCAR)\",\"volume\":\"288 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Control, Automation and Robotics (ICCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAR.2018.8384713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2018.8384713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

利用二维激光雷达同时定位和绘图(SLAM)是机器人建立平面的一种有效方法,但它对环境很敏感。为了提高精度,我们将激光雷达数据与子地图进行匹配。此外,我们将激光雷达数据转换成图像,并与相机数据合并进行图像匹配。结合这两种方法,我们实现了鲁棒和准确的闭环检测。将CNN模型生成的描述符作为特征进行图像匹配,提高匹配精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loop closure detection in SLAM by combining visual CNN features and submaps
Using simultaneous localization and mapping (SLAM) with 2D LIDAR is an efficient approach for robots to build a floor plan, but it is sensitive to the environment. For improving the accuracy, we match LIDAR data with sub-maps. Furthermore, we convert LIDAR data to images and merge with camera data for image matching. Combining the two approaches, we achieve robust and accurate loop closure detection. The descriptors generated by CNN model will be used as features to image matching for accuracy improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信