{"title":"利用负能量场的量子阱LED的电致发光","authors":"S. Steiger, R. Veprek, B. Witzigmann","doi":"10.1109/IWCE.2009.5091112","DOIUrl":null,"url":null,"abstract":"Nonequilibrium Green's functions (NEGF) are employed to model carrier transport and luminescence in a single-quantum-well light-emitting diode (LED). The sound theoretical formalism allows for a consistent description of coherence loss as well as fundamental scattering mechanisms and reveals details about physical phenomena such as the quantum-confined Stark and Franz-Keldysh effects, tunneling and carrier capture. A comparison to semiclassical results is made and similarities as well as differences are highlighted.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Electroluminescence from a Quantum-Well LED using NEGF\",\"authors\":\"S. Steiger, R. Veprek, B. Witzigmann\",\"doi\":\"10.1109/IWCE.2009.5091112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonequilibrium Green's functions (NEGF) are employed to model carrier transport and luminescence in a single-quantum-well light-emitting diode (LED). The sound theoretical formalism allows for a consistent description of coherence loss as well as fundamental scattering mechanisms and reveals details about physical phenomena such as the quantum-confined Stark and Franz-Keldysh effects, tunneling and carrier capture. A comparison to semiclassical results is made and similarities as well as differences are highlighted.\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electroluminescence from a Quantum-Well LED using NEGF
Nonequilibrium Green's functions (NEGF) are employed to model carrier transport and luminescence in a single-quantum-well light-emitting diode (LED). The sound theoretical formalism allows for a consistent description of coherence loss as well as fundamental scattering mechanisms and reveals details about physical phenomena such as the quantum-confined Stark and Franz-Keldysh effects, tunneling and carrier capture. A comparison to semiclassical results is made and similarities as well as differences are highlighted.