{"title":"节点剔除多命中BVH遍历","authors":"C. Gribble","doi":"10.2312/sre.20161213","DOIUrl":null,"url":null,"abstract":"We introduce node culling multi-hit BVH traversal to enable faster multi-hit ray tracing in a bounding volume hierarchy (BVH). Existing, widely used ray tracing engines expose API features that enable implementation of multi-hit traversal without modifying their underlying---and highly optimized---BVH construction and traversal routines; however, this approach requires naive multi-hit traversal to guarantee correctness. We evaluate two low-overhead, minimally invasive, and flexible API mechanisms that enable node culling implementation entirely with user-level code, thereby leveraging existing BVH construction and traversal routines. Results show that node culling offers potentially significant improvement in multi-hit performance in a BVH for cases in which users request fewer-than-all hits.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Node Culling Multi-Hit BVH Traversal\",\"authors\":\"C. Gribble\",\"doi\":\"10.2312/sre.20161213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce node culling multi-hit BVH traversal to enable faster multi-hit ray tracing in a bounding volume hierarchy (BVH). Existing, widely used ray tracing engines expose API features that enable implementation of multi-hit traversal without modifying their underlying---and highly optimized---BVH construction and traversal routines; however, this approach requires naive multi-hit traversal to guarantee correctness. We evaluate two low-overhead, minimally invasive, and flexible API mechanisms that enable node culling implementation entirely with user-level code, thereby leveraging existing BVH construction and traversal routines. Results show that node culling offers potentially significant improvement in multi-hit performance in a BVH for cases in which users request fewer-than-all hits.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/sre.20161213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/sre.20161213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce node culling multi-hit BVH traversal to enable faster multi-hit ray tracing in a bounding volume hierarchy (BVH). Existing, widely used ray tracing engines expose API features that enable implementation of multi-hit traversal without modifying their underlying---and highly optimized---BVH construction and traversal routines; however, this approach requires naive multi-hit traversal to guarantee correctness. We evaluate two low-overhead, minimally invasive, and flexible API mechanisms that enable node culling implementation entirely with user-level code, thereby leveraging existing BVH construction and traversal routines. Results show that node culling offers potentially significant improvement in multi-hit performance in a BVH for cases in which users request fewer-than-all hits.