Web应用程序的用户帐户风险识别模型

Yang Wang, Zhaoxin Zhang, Lejun Chi
{"title":"Web应用程序的用户帐户风险识别模型","authors":"Yang Wang, Zhaoxin Zhang, Lejun Chi","doi":"10.1145/3323933.3324058","DOIUrl":null,"url":null,"abstract":"With the continuous development of the Internet era, the information security environment faced by Internet users is becoming more and more severe. In view of the intensified user account theft on the Internet, this paper analyzes the user behavior habits by collecting user behavior information and application log, and proposes a user account risk identification algorithm based on user behavior. In order to improve the accuracy of user account risk identification, Firstly, use the Kmeans algorithm to cluster user accounts based on user behavior data. In the clustering process, the PSO (Particle Swarm Optimization) algorithm is introduced to form an improved PSO_Kmeans clustering algorithm. Then, extend log data with imported external \"threat intelligence\" data, to classify the clustered data, using Random Forest, Decision Tree, Naive Bayesian machine learning classification algorithm. The experimental results show that the model can effectively identify the risk account.","PeriodicalId":137904,"journal":{"name":"Proceedings of the 2019 5th International Conference on Computer and Technology Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"User Account Risk Identification Model for Web Applications\",\"authors\":\"Yang Wang, Zhaoxin Zhang, Lejun Chi\",\"doi\":\"10.1145/3323933.3324058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous development of the Internet era, the information security environment faced by Internet users is becoming more and more severe. In view of the intensified user account theft on the Internet, this paper analyzes the user behavior habits by collecting user behavior information and application log, and proposes a user account risk identification algorithm based on user behavior. In order to improve the accuracy of user account risk identification, Firstly, use the Kmeans algorithm to cluster user accounts based on user behavior data. In the clustering process, the PSO (Particle Swarm Optimization) algorithm is introduced to form an improved PSO_Kmeans clustering algorithm. Then, extend log data with imported external \\\"threat intelligence\\\" data, to classify the clustered data, using Random Forest, Decision Tree, Naive Bayesian machine learning classification algorithm. The experimental results show that the model can effectively identify the risk account.\",\"PeriodicalId\":137904,\"journal\":{\"name\":\"Proceedings of the 2019 5th International Conference on Computer and Technology Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 5th International Conference on Computer and Technology Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323933.3324058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 5th International Conference on Computer and Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323933.3324058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着互联网时代的不断发展,互联网用户所面临的信息安全环境也越来越严峻。针对互联网上用户账号盗窃现象愈演愈烈的现状,本文通过收集用户行为信息和应用日志对用户行为习惯进行分析,提出了一种基于用户行为的用户账号风险识别算法。为了提高用户账户风险识别的准确性,首先,采用基于用户行为数据的Kmeans算法对用户账户进行聚类。在聚类过程中,引入PSO (Particle Swarm Optimization)算法,形成改进的PSO_Kmeans聚类算法。然后,使用导入的外部“威胁情报”数据扩展日志数据,使用随机森林、决策树、朴素贝叶斯机器学习分类算法对聚类数据进行分类。实验结果表明,该模型能够有效地识别风险账户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User Account Risk Identification Model for Web Applications
With the continuous development of the Internet era, the information security environment faced by Internet users is becoming more and more severe. In view of the intensified user account theft on the Internet, this paper analyzes the user behavior habits by collecting user behavior information and application log, and proposes a user account risk identification algorithm based on user behavior. In order to improve the accuracy of user account risk identification, Firstly, use the Kmeans algorithm to cluster user accounts based on user behavior data. In the clustering process, the PSO (Particle Swarm Optimization) algorithm is introduced to form an improved PSO_Kmeans clustering algorithm. Then, extend log data with imported external "threat intelligence" data, to classify the clustered data, using Random Forest, Decision Tree, Naive Bayesian machine learning classification algorithm. The experimental results show that the model can effectively identify the risk account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信