关于任意大面积和莫尔斯指数的极小超曲面的存在性

Yangyang Li
{"title":"关于任意大面积和莫尔斯指数的极小超曲面的存在性","authors":"Yangyang Li","doi":"10.2140/gt.2022.26.2713","DOIUrl":null,"url":null,"abstract":"We show that a bumpy closed Riemannian manifold $(M^{n+1}, g)$ $(3 \\leq n+1 \\leq 7)$ admits a sequence of connected closed embedded two-sided minimal hypersurfaces whose areas and Morse indices both tend to infinity. This improves a previous result by O. Chodosh and C. Mantoulidis on connected minimal hypersurfaces with arbitrarily large area.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the existence of minimal hypersurfaces with arbitrarily large area and Morse index\",\"authors\":\"Yangyang Li\",\"doi\":\"10.2140/gt.2022.26.2713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a bumpy closed Riemannian manifold $(M^{n+1}, g)$ $(3 \\\\leq n+1 \\\\leq 7)$ admits a sequence of connected closed embedded two-sided minimal hypersurfaces whose areas and Morse indices both tend to infinity. This improves a previous result by O. Chodosh and C. Mantoulidis on connected minimal hypersurfaces with arbitrarily large area.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.2713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.2713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了凹凸不平的封闭黎曼流形$(M^{n+1}, g)$$(3 \leq n+1 \leq 7)$允许一系列连通的封闭嵌入的双面极小超曲面,其面积和摩尔斯指数都趋于无穷。这改进了O. Chodosh和C. Mantoulidis先前关于任意大面积连通极小超曲面的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of minimal hypersurfaces with arbitrarily large area and Morse index
We show that a bumpy closed Riemannian manifold $(M^{n+1}, g)$ $(3 \leq n+1 \leq 7)$ admits a sequence of connected closed embedded two-sided minimal hypersurfaces whose areas and Morse indices both tend to infinity. This improves a previous result by O. Chodosh and C. Mantoulidis on connected minimal hypersurfaces with arbitrarily large area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信