自动驾驶汽车固定路径动态环境下的速度规划

Wenda Xu, J. Dolan
{"title":"自动驾驶汽车固定路径动态环境下的速度规划","authors":"Wenda Xu, J. Dolan","doi":"10.1109/icra46639.2022.9812136","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel convex optimization approach to address the minimum-time speed planning problem over a fixed path with dynamic obstacle constraints and point-wise speed and acceleration constraints. The contributions of this paper are three-fold. First, we formulate the speed planning as an iterative convex optimization problem based on space discretization. Our formulation allows imposing dynamic obstacle constraints and point-wise speed and acceleration constraints simultaneously. Second, we propose a modified vertical cell decomposition method to handle dynamic obstacles. It divides the freespace into channels, where each channel represents a homotopy of free paths and defines convex constraints for dynamic obstacles. Third, we demonstrate significant improvement over previous work on speed planning for typical driving scenarios such as following, merging, and crossing.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Speed Planning in Dynamic Environments over a Fixed Path for Autonomous Vehicles\",\"authors\":\"Wenda Xu, J. Dolan\",\"doi\":\"10.1109/icra46639.2022.9812136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel convex optimization approach to address the minimum-time speed planning problem over a fixed path with dynamic obstacle constraints and point-wise speed and acceleration constraints. The contributions of this paper are three-fold. First, we formulate the speed planning as an iterative convex optimization problem based on space discretization. Our formulation allows imposing dynamic obstacle constraints and point-wise speed and acceleration constraints simultaneously. Second, we propose a modified vertical cell decomposition method to handle dynamic obstacles. It divides the freespace into channels, where each channel represents a homotopy of free paths and defines convex constraints for dynamic obstacles. Third, we demonstrate significant improvement over previous work on speed planning for typical driving scenarios such as following, merging, and crossing.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9812136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9812136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的凸优化方法来解决具有动态障碍物约束和点方向速度和加速度约束的固定路径上的最小时间速度规划问题。本文的贡献有三个方面。首先,我们将速度规划表述为基于空间离散化的迭代凸优化问题。我们的公式允许同时施加动态障碍约束和逐点速度和加速度约束。其次,我们提出了一种改进的垂直单元分解方法来处理动态障碍物。它将自由空间划分为通道,其中每个通道表示自由路径的同伦,并定义动态障碍物的凸约束。第三,我们在典型驾驶场景(如跟随、合并和穿越)的速度规划方面取得了显著进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speed Planning in Dynamic Environments over a Fixed Path for Autonomous Vehicles
In this paper, we present a novel convex optimization approach to address the minimum-time speed planning problem over a fixed path with dynamic obstacle constraints and point-wise speed and acceleration constraints. The contributions of this paper are three-fold. First, we formulate the speed planning as an iterative convex optimization problem based on space discretization. Our formulation allows imposing dynamic obstacle constraints and point-wise speed and acceleration constraints simultaneously. Second, we propose a modified vertical cell decomposition method to handle dynamic obstacles. It divides the freespace into channels, where each channel represents a homotopy of free paths and defines convex constraints for dynamic obstacles. Third, we demonstrate significant improvement over previous work on speed planning for typical driving scenarios such as following, merging, and crossing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信