不同不规则程度的距离图像特征提取

S. Suganthan, S. Coleman, B. Scotney
{"title":"不同不规则程度的距离图像特征提取","authors":"S. Suganthan, S. Coleman, B. Scotney","doi":"10.1109/IMVIP.2007.32","DOIUrl":null,"url":null,"abstract":"The use of range images has become prominent in the field of computer vision. Due to the irregular nature of range image data that occurs with a number of sensors, edge detection techniques for range images are often based on scan line data approximations and hence do not employ exact data locations. We present a finite element based approach to the development of gradient operators that can be applied to both regularly and irregularly distributed range images. We have created synthetic irregularly distributed range images for each edge type, and the gradient operators developed are evaluated with respect to their performance in edge detection across varying levels of data irregularity.","PeriodicalId":249544,"journal":{"name":"International Machine Vision and Image Processing Conference (IMVIP 2007)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Range Image Feature Extraction with Varying Degrees of Data Irregularity\",\"authors\":\"S. Suganthan, S. Coleman, B. Scotney\",\"doi\":\"10.1109/IMVIP.2007.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of range images has become prominent in the field of computer vision. Due to the irregular nature of range image data that occurs with a number of sensors, edge detection techniques for range images are often based on scan line data approximations and hence do not employ exact data locations. We present a finite element based approach to the development of gradient operators that can be applied to both regularly and irregularly distributed range images. We have created synthetic irregularly distributed range images for each edge type, and the gradient operators developed are evaluated with respect to their performance in edge detection across varying levels of data irregularity.\",\"PeriodicalId\":249544,\"journal\":{\"name\":\"International Machine Vision and Image Processing Conference (IMVIP 2007)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Machine Vision and Image Processing Conference (IMVIP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMVIP.2007.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Machine Vision and Image Processing Conference (IMVIP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2007.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

距离图像的使用在计算机视觉领域已经成为一个突出的问题。由于许多传感器的距离图像数据具有不规则性,因此距离图像的边缘检测技术通常基于扫描线数据近似值,因此不使用精确的数据位置。我们提出了一种基于有限元的方法来开发梯度算子,可以应用于规则和不规则分布的距离图像。我们为每种边缘类型创建了合成的不规则分布范围图像,并且评估了开发的梯度算子在不同数据不规则程度的边缘检测中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Range Image Feature Extraction with Varying Degrees of Data Irregularity
The use of range images has become prominent in the field of computer vision. Due to the irregular nature of range image data that occurs with a number of sensors, edge detection techniques for range images are often based on scan line data approximations and hence do not employ exact data locations. We present a finite element based approach to the development of gradient operators that can be applied to both regularly and irregularly distributed range images. We have created synthetic irregularly distributed range images for each edge type, and the gradient operators developed are evaluated with respect to their performance in edge detection across varying levels of data irregularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信