Amine Khelifi, Mahmut Gemici, Giuseppina Carannante, C. Johnson, N. Bouaynaya
{"title":"基于卫星图像的机场跑道检测与定位的深度学习方法","authors":"Amine Khelifi, Mahmut Gemici, Giuseppina Carannante, C. Johnson, N. Bouaynaya","doi":"10.1109/ISCC58397.2023.10217868","DOIUrl":null,"url":null,"abstract":"The US lacks a complete national database of private prior permission required airports due to insufficient federal requirements for regular updates. The initial data entry into the system is usually not refreshed by the Federal Aviation Administration (FAA) or local state Department of Transportation. However, outdated or inaccurate information poses risks to aviation safety. This paper suggests a deep learning (DL) approach using Google Earth satellite imagery to identify and locate airport landing sites. The study aims to demonstrate the potential of DL algorithms in processing satellite imagery and improve the precision of the FAA's runway database. We evaluate the performance of Faster Region-based Convolutional Neural Networks using advanced backbone architectures, namely Resnet101 and Resnet-X152, in the detection of airport runways. We incorporate negative samples, i.e., highways images, to enhance the performance of the model. Our simulations reveal that Resnet-X152 outperformed Resnet101 achieving a mean average precision of 76%.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Approach For Airport Runway Detection and Localization From Satellite Imagery\",\"authors\":\"Amine Khelifi, Mahmut Gemici, Giuseppina Carannante, C. Johnson, N. Bouaynaya\",\"doi\":\"10.1109/ISCC58397.2023.10217868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The US lacks a complete national database of private prior permission required airports due to insufficient federal requirements for regular updates. The initial data entry into the system is usually not refreshed by the Federal Aviation Administration (FAA) or local state Department of Transportation. However, outdated or inaccurate information poses risks to aviation safety. This paper suggests a deep learning (DL) approach using Google Earth satellite imagery to identify and locate airport landing sites. The study aims to demonstrate the potential of DL algorithms in processing satellite imagery and improve the precision of the FAA's runway database. We evaluate the performance of Faster Region-based Convolutional Neural Networks using advanced backbone architectures, namely Resnet101 and Resnet-X152, in the detection of airport runways. We incorporate negative samples, i.e., highways images, to enhance the performance of the model. Our simulations reveal that Resnet-X152 outperformed Resnet101 achieving a mean average precision of 76%.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10217868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10217868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Learning Approach For Airport Runway Detection and Localization From Satellite Imagery
The US lacks a complete national database of private prior permission required airports due to insufficient federal requirements for regular updates. The initial data entry into the system is usually not refreshed by the Federal Aviation Administration (FAA) or local state Department of Transportation. However, outdated or inaccurate information poses risks to aviation safety. This paper suggests a deep learning (DL) approach using Google Earth satellite imagery to identify and locate airport landing sites. The study aims to demonstrate the potential of DL algorithms in processing satellite imagery and improve the precision of the FAA's runway database. We evaluate the performance of Faster Region-based Convolutional Neural Networks using advanced backbone architectures, namely Resnet101 and Resnet-X152, in the detection of airport runways. We incorporate negative samples, i.e., highways images, to enhance the performance of the model. Our simulations reveal that Resnet-X152 outperformed Resnet101 achieving a mean average precision of 76%.