{"title":"基于金属-聚合物复合薄膜的宽带epsilon-近零超材料","authors":"P. Pinchuk, K. Jiang","doi":"10.1117/12.2187283","DOIUrl":null,"url":null,"abstract":"Epsilon-near-zero (ENZ) metamaterials are designed to exhibit a near-zero response for the real part of the dielectric permittivity at a given frequency or in a specific frequency range. Typically, this frequency range is relatively small. In this paper, we present an approach to broaden this range by controlling the size of the nanoparticles embedded in a thin film. Noble metal nanoparticles exhibit an external size effect that redshifts the Surface Plasmon Resonance frequency with an increase of the size of the particles. The absorption spectrum of a material can be directly related to its dielectric permittivity via the Kramers-Kronig relations. We use the Kramers-Kronig relations to retrieve the complex effective dielectric permittivity of a composite film, which is designed to exhibit ENZ behavior over a broad frequency range. We synthesize a composite thin film embedded with metal nanoparticles of a broad size distribution. Such a material exhibits a broad SPR, and, in turn, broadband ENZ behavior.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Broadband epsilon-near-zero metamaterials based on metal-polymer composite thin films\",\"authors\":\"P. Pinchuk, K. Jiang\",\"doi\":\"10.1117/12.2187283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epsilon-near-zero (ENZ) metamaterials are designed to exhibit a near-zero response for the real part of the dielectric permittivity at a given frequency or in a specific frequency range. Typically, this frequency range is relatively small. In this paper, we present an approach to broaden this range by controlling the size of the nanoparticles embedded in a thin film. Noble metal nanoparticles exhibit an external size effect that redshifts the Surface Plasmon Resonance frequency with an increase of the size of the particles. The absorption spectrum of a material can be directly related to its dielectric permittivity via the Kramers-Kronig relations. We use the Kramers-Kronig relations to retrieve the complex effective dielectric permittivity of a composite film, which is designed to exhibit ENZ behavior over a broad frequency range. We synthesize a composite thin film embedded with metal nanoparticles of a broad size distribution. Such a material exhibits a broad SPR, and, in turn, broadband ENZ behavior.\",\"PeriodicalId\":432358,\"journal\":{\"name\":\"SPIE NanoScience + Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE NanoScience + Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2187283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Broadband epsilon-near-zero metamaterials based on metal-polymer composite thin films
Epsilon-near-zero (ENZ) metamaterials are designed to exhibit a near-zero response for the real part of the dielectric permittivity at a given frequency or in a specific frequency range. Typically, this frequency range is relatively small. In this paper, we present an approach to broaden this range by controlling the size of the nanoparticles embedded in a thin film. Noble metal nanoparticles exhibit an external size effect that redshifts the Surface Plasmon Resonance frequency with an increase of the size of the particles. The absorption spectrum of a material can be directly related to its dielectric permittivity via the Kramers-Kronig relations. We use the Kramers-Kronig relations to retrieve the complex effective dielectric permittivity of a composite film, which is designed to exhibit ENZ behavior over a broad frequency range. We synthesize a composite thin film embedded with metal nanoparticles of a broad size distribution. Such a material exhibits a broad SPR, and, in turn, broadband ENZ behavior.