基于传感器选择的多传感器无源定位

Wen Ma, Hongyan Zhu, Yan Lin
{"title":"基于传感器选择的多传感器无源定位","authors":"Wen Ma, Hongyan Zhu, Yan Lin","doi":"10.23919/fusion43075.2019.9011312","DOIUrl":null,"url":null,"abstract":"In passive localization applications, the positioning accuracy for an emitter is highly dependent on the geometry between sensors and the target, the site error and measurement noise of sensors. We propose a sensor selection mechanism which aims to choose a subset of sensors to implement the multi-sensor passive localization. An optimization model is established by minimizing the GDOP (geometric dilution of precision), with or without the constraint on the cardinality of the selected sensor subset. The CEO (cross entropy optimization) is employed to solve the resulting complex combinatorial optimization model. Simulation experiments are conducted and simulation results demonstrate the efficiency of the proposed sensor selection scheme for multi-sensor passive localization.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Sensor Passive Localization Based on Sensor Selection\",\"authors\":\"Wen Ma, Hongyan Zhu, Yan Lin\",\"doi\":\"10.23919/fusion43075.2019.9011312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In passive localization applications, the positioning accuracy for an emitter is highly dependent on the geometry between sensors and the target, the site error and measurement noise of sensors. We propose a sensor selection mechanism which aims to choose a subset of sensors to implement the multi-sensor passive localization. An optimization model is established by minimizing the GDOP (geometric dilution of precision), with or without the constraint on the cardinality of the selected sensor subset. The CEO (cross entropy optimization) is employed to solve the resulting complex combinatorial optimization model. Simulation experiments are conducted and simulation results demonstrate the efficiency of the proposed sensor selection scheme for multi-sensor passive localization.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在被动定位应用中,发射器的定位精度高度依赖于传感器与目标之间的几何形状、传感器的位置误差和测量噪声。提出了一种传感器选择机制,该机制旨在选择传感器子集来实现多传感器无源定位。通过最小化GDOP(几何精度稀释),在有或没有所选传感器子集基数约束的情况下建立优化模型。采用交叉熵优化方法求解得到的复杂组合优化模型。进行了仿真实验,仿真结果证明了所提出的多传感器无源定位传感器选择方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Sensor Passive Localization Based on Sensor Selection
In passive localization applications, the positioning accuracy for an emitter is highly dependent on the geometry between sensors and the target, the site error and measurement noise of sensors. We propose a sensor selection mechanism which aims to choose a subset of sensors to implement the multi-sensor passive localization. An optimization model is established by minimizing the GDOP (geometric dilution of precision), with or without the constraint on the cardinality of the selected sensor subset. The CEO (cross entropy optimization) is employed to solve the resulting complex combinatorial optimization model. Simulation experiments are conducted and simulation results demonstrate the efficiency of the proposed sensor selection scheme for multi-sensor passive localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信