负荷大数据时间序列分析模型预测比较研究

Jaehyung Kim, Taehyoung Kim, K. Ham
{"title":"负荷大数据时间序列分析模型预测比较研究","authors":"Jaehyung Kim, Taehyoung Kim, K. Ham","doi":"10.1145/3129676.3129719","DOIUrl":null,"url":null,"abstract":"As energy supply changes become more important, interest in the field of efficient energy management is increasing. In this paper, demand forecasting is performed through time series analysis of power big data. And we measured the performance through predictive comparison of time series prediction model.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Prediction Comparison by Time Series Analysis Model of Load Big data\",\"authors\":\"Jaehyung Kim, Taehyoung Kim, K. Ham\",\"doi\":\"10.1145/3129676.3129719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As energy supply changes become more important, interest in the field of efficient energy management is increasing. In this paper, demand forecasting is performed through time series analysis of power big data. And we measured the performance through predictive comparison of time series prediction model.\",\"PeriodicalId\":326100,\"journal\":{\"name\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3129676.3129719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129676.3129719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着能源供应的变化变得越来越重要,人们对高效能源管理领域的兴趣日益增加。本文通过电力大数据的时间序列分析进行需求预测。并通过时间序列预测模型的预测比较来衡量其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Prediction Comparison by Time Series Analysis Model of Load Big data
As energy supply changes become more important, interest in the field of efficient energy management is increasing. In this paper, demand forecasting is performed through time series analysis of power big data. And we measured the performance through predictive comparison of time series prediction model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信