基于多尺度奇异值分解的病理多导联心电图信号去噪

Lavanya Sharma
{"title":"基于多尺度奇异值分解的病理多导联心电图信号去噪","authors":"Lavanya Sharma","doi":"10.1109/ICTKE.2014.7001525","DOIUrl":null,"url":null,"abstract":"In this paper, denoising of multilead electrocardiograms (ECG) using multiscale singular value decomposition is proposed. If signal of each ECG leads are wavelet transformed with same mother wavelet and decomposition levels, it helps formation of multivariate multiscale matrices at wavelet scales. Singular value decomposition is applies in these scales. A new method to select singular values at these scales is proposed which is based on weighted ratio of matrix norms. This optimizes the approximate ranks for multiscale multivariate matrices to capture the diagnostic components present at different scales. Testing with records from PTB diagnostic ECG database for various pathological cases gives better SNR improvement retaining the pathological signatures. After adding white Gaussian noise at different SNR levels, quantitative analysis is carried out by evaluating error measures like percentage root mean square difference (PRD), root mean square error (NRMSE) and wavelet energy based diagnostic distortion measure (WEDD).","PeriodicalId":120743,"journal":{"name":"2014 Twelfth International Conference on ICT and Knowledge Engineering","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Denoising pathological multilead electrocardiogram signals using multiscale singular value decomposition\",\"authors\":\"Lavanya Sharma\",\"doi\":\"10.1109/ICTKE.2014.7001525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, denoising of multilead electrocardiograms (ECG) using multiscale singular value decomposition is proposed. If signal of each ECG leads are wavelet transformed with same mother wavelet and decomposition levels, it helps formation of multivariate multiscale matrices at wavelet scales. Singular value decomposition is applies in these scales. A new method to select singular values at these scales is proposed which is based on weighted ratio of matrix norms. This optimizes the approximate ranks for multiscale multivariate matrices to capture the diagnostic components present at different scales. Testing with records from PTB diagnostic ECG database for various pathological cases gives better SNR improvement retaining the pathological signatures. After adding white Gaussian noise at different SNR levels, quantitative analysis is carried out by evaluating error measures like percentage root mean square difference (PRD), root mean square error (NRMSE) and wavelet energy based diagnostic distortion measure (WEDD).\",\"PeriodicalId\":120743,\"journal\":{\"name\":\"2014 Twelfth International Conference on ICT and Knowledge Engineering\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Twelfth International Conference on ICT and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTKE.2014.7001525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Twelfth International Conference on ICT and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTKE.2014.7001525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于多尺度奇异值分解的多导联心电图去噪方法。采用相同的母小波和分解层次对各导联信号进行小波变换,有助于在小波尺度上形成多元多尺度矩阵。奇异值分解适用于这些尺度。提出了一种基于矩阵范数加权比率的奇异值选择方法。这优化了多尺度多元矩阵的近似秩,以捕获不同尺度上存在的诊断成分。采用PTB诊断心电图数据库记录对各种病理病例进行检测,可获得更好的信噪比改善,保留病理特征。在加入不同信噪比的高斯白噪声后,通过评价百分比均方根差(PRD)、均方根误差(NRMSE)和基于小波能量的诊断失真测量(WEDD)等误差指标进行定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Denoising pathological multilead electrocardiogram signals using multiscale singular value decomposition
In this paper, denoising of multilead electrocardiograms (ECG) using multiscale singular value decomposition is proposed. If signal of each ECG leads are wavelet transformed with same mother wavelet and decomposition levels, it helps formation of multivariate multiscale matrices at wavelet scales. Singular value decomposition is applies in these scales. A new method to select singular values at these scales is proposed which is based on weighted ratio of matrix norms. This optimizes the approximate ranks for multiscale multivariate matrices to capture the diagnostic components present at different scales. Testing with records from PTB diagnostic ECG database for various pathological cases gives better SNR improvement retaining the pathological signatures. After adding white Gaussian noise at different SNR levels, quantitative analysis is carried out by evaluating error measures like percentage root mean square difference (PRD), root mean square error (NRMSE) and wavelet energy based diagnostic distortion measure (WEDD).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信