BulkSMT:为原子块执行设计SMT处理器

Xuehai Qian, B. Sahelices, J. Torrellas
{"title":"BulkSMT:为原子块执行设计SMT处理器","authors":"Xuehai Qian, B. Sahelices, J. Torrellas","doi":"10.1109/HPCA.2012.6168952","DOIUrl":null,"url":null,"abstract":"Multiprocessor architectures that continuously execute atomic blocks (or chunks) of instructions can improve performance and software productivity. However, all of the prior proposals for such architectures assume single-context cores as building blocks - rather than the widely-used Simultaneous Multithreading (SMT) cores. As a result, they are underutilizing hardware resources. This paper presents the first SMT design that supports continuous chunked (or transactional) execution of its contexts. Our design, called BulkSMT, can be used either in a single-core processor or in a multicore of SMTs. We present a set of BulkSMT configurations with different cost and performance. We also describe the architectural primitives that enable chunked execution in an SMT core and in a multicore of SMTs. Our results, based on simulations of SPLASH-2 and PARSEC codes, show that BulkSMT supports chunked execution cost-effectively. In a 4-core multicore with eager chunked execution, BulkSMT reduces the execution time of the applications by an average of 26% compared to running on single-context cores. In a single core, the average reduction is 32%.","PeriodicalId":380383,"journal":{"name":"IEEE International Symposium on High-Performance Comp Architecture","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"BulkSMT: Designing SMT processors for atomic-block execution\",\"authors\":\"Xuehai Qian, B. Sahelices, J. Torrellas\",\"doi\":\"10.1109/HPCA.2012.6168952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiprocessor architectures that continuously execute atomic blocks (or chunks) of instructions can improve performance and software productivity. However, all of the prior proposals for such architectures assume single-context cores as building blocks - rather than the widely-used Simultaneous Multithreading (SMT) cores. As a result, they are underutilizing hardware resources. This paper presents the first SMT design that supports continuous chunked (or transactional) execution of its contexts. Our design, called BulkSMT, can be used either in a single-core processor or in a multicore of SMTs. We present a set of BulkSMT configurations with different cost and performance. We also describe the architectural primitives that enable chunked execution in an SMT core and in a multicore of SMTs. Our results, based on simulations of SPLASH-2 and PARSEC codes, show that BulkSMT supports chunked execution cost-effectively. In a 4-core multicore with eager chunked execution, BulkSMT reduces the execution time of the applications by an average of 26% compared to running on single-context cores. In a single core, the average reduction is 32%.\",\"PeriodicalId\":380383,\"journal\":{\"name\":\"IEEE International Symposium on High-Performance Comp Architecture\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on High-Performance Comp Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2012.6168952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Comp Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2012.6168952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

连续执行原子块(或块)指令的多处理器体系结构可以提高性能和软件生产率。然而,这些架构之前的所有建议都假定单上下文内核作为构建块——而不是广泛使用的同步多线程(SMT)内核。因此,它们没有充分利用硬件资源。本文提出了第一个支持上下文连续分块(或事务性)执行的SMT设计。我们的设计称为BulkSMT,既可以在单核处理器中使用,也可以在多核smt中使用。我们提出了一组具有不同成本和性能的BulkSMT配置。我们还描述了支持在SMT核心和多核SMT中分块执行的体系结构原语。我们的结果,基于SPLASH-2和PARSEC代码的模拟,表明BulkSMT支持块执行成本有效。在4核多核中,与在单上下文核心上运行相比,BulkSMT将应用程序的执行时间平均减少了26%。在单个内核中,平均减少了32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BulkSMT: Designing SMT processors for atomic-block execution
Multiprocessor architectures that continuously execute atomic blocks (or chunks) of instructions can improve performance and software productivity. However, all of the prior proposals for such architectures assume single-context cores as building blocks - rather than the widely-used Simultaneous Multithreading (SMT) cores. As a result, they are underutilizing hardware resources. This paper presents the first SMT design that supports continuous chunked (or transactional) execution of its contexts. Our design, called BulkSMT, can be used either in a single-core processor or in a multicore of SMTs. We present a set of BulkSMT configurations with different cost and performance. We also describe the architectural primitives that enable chunked execution in an SMT core and in a multicore of SMTs. Our results, based on simulations of SPLASH-2 and PARSEC codes, show that BulkSMT supports chunked execution cost-effectively. In a 4-core multicore with eager chunked execution, BulkSMT reduces the execution time of the applications by an average of 26% compared to running on single-context cores. In a single core, the average reduction is 32%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信