南京江心洲长江大桥钢-混凝土组合斜拉桥-主跨桥

Bing Cui, Huanling Wu, Zhiming Guo, Canhui Zhao, Jiaping Liu
{"title":"南京江心洲长江大桥钢-混凝土组合斜拉桥-主跨桥","authors":"Bing Cui, Huanling Wu, Zhiming Guo, Canhui Zhao, Jiaping Liu","doi":"10.2749/nanjing.2022.2059","DOIUrl":null,"url":null,"abstract":"The main bridge of Nanjing Jiangxinzhou Yangtze River Bridge is in the form of a cable-stayed bridge with three towers and two main spans, with a total length of 1796m and a main span of 600m. The towers and main beams are all composite structures, which is the first all-steel-concrete composite cable-stayed bridge in the world. The bridge originally develops the steel shell-concrete composite tower, investigates coarse aggregate reactive powder concrete (CA-RPC), and applies it to the main girder to form a lightweight and high-performance beam. Numerous technologies have been achieved in new materials, new structures, new processes, and many other aspects. The unique structural concept has significantly increased the factory manufacturing speed, which not only reduces the work and labour cost 25% but also reduces the amount and loss of materials during construction, which has made contributions to the development of cable-stayed bridges.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steel-concrete Composite Cable-stayed Bridge—Main Crossing Bridge of Nanjing Jiangxinzhou Yangtze River Bridge\",\"authors\":\"Bing Cui, Huanling Wu, Zhiming Guo, Canhui Zhao, Jiaping Liu\",\"doi\":\"10.2749/nanjing.2022.2059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main bridge of Nanjing Jiangxinzhou Yangtze River Bridge is in the form of a cable-stayed bridge with three towers and two main spans, with a total length of 1796m and a main span of 600m. The towers and main beams are all composite structures, which is the first all-steel-concrete composite cable-stayed bridge in the world. The bridge originally develops the steel shell-concrete composite tower, investigates coarse aggregate reactive powder concrete (CA-RPC), and applies it to the main girder to form a lightweight and high-performance beam. Numerous technologies have been achieved in new materials, new structures, new processes, and many other aspects. The unique structural concept has significantly increased the factory manufacturing speed, which not only reduces the work and labour cost 25% but also reduces the amount and loss of materials during construction, which has made contributions to the development of cable-stayed bridges.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.2059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.2059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

南京江心洲长江大桥主桥为三塔两跨斜拉桥形式,全长1796米,主跨600米。塔架和主梁均为组合结构,是世界上第一座全钢-混凝土组合斜拉桥。该桥最初发展钢壳-混凝土组合塔,研究粗集料活性粉末混凝土(CA-RPC),并将其应用于主梁,形成轻质高性能梁。在新材料、新结构、新工艺和许多其他方面取得了许多技术。独特的结构理念大大提高了工厂制造速度,不仅降低了25%的工作和人工成本,而且减少了施工过程中的材料数量和损耗,为斜拉桥的发展做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steel-concrete Composite Cable-stayed Bridge—Main Crossing Bridge of Nanjing Jiangxinzhou Yangtze River Bridge
The main bridge of Nanjing Jiangxinzhou Yangtze River Bridge is in the form of a cable-stayed bridge with three towers and two main spans, with a total length of 1796m and a main span of 600m. The towers and main beams are all composite structures, which is the first all-steel-concrete composite cable-stayed bridge in the world. The bridge originally develops the steel shell-concrete composite tower, investigates coarse aggregate reactive powder concrete (CA-RPC), and applies it to the main girder to form a lightweight and high-performance beam. Numerous technologies have been achieved in new materials, new structures, new processes, and many other aspects. The unique structural concept has significantly increased the factory manufacturing speed, which not only reduces the work and labour cost 25% but also reduces the amount and loss of materials during construction, which has made contributions to the development of cable-stayed bridges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信