合成孔径声纳图像的统一语义分割与目标检测框架

Shannon-Morgan Steele
{"title":"合成孔径声纳图像的统一语义分割与目标检测框架","authors":"Shannon-Morgan Steele","doi":"10.1109/ICASSPW59220.2023.10193155","DOIUrl":null,"url":null,"abstract":"Manually identifying objects in synthetic aperture sonar (SAS) imagery is costly and time consuming, making identification through computer vision and deep learning techniques an appealing alternative. Depending on the application, a generalized map (semantic segmentation) and/or a characterization of each individual object (object detection) may be desired. Here, we demonstrate a framework that allows us to simultaneously generate both semantic segmentation maps and object detections with a single deep learning model by chaining together a U-Net model with k-means clustering and connected components. This framework streamlines the model training phase by allowing us to utilize a set of semantically segmented training data to yield both semantic segmentation and bounding box predictions. We demonstrate that the deep learning model can achieve accurate predictions with a small training set through transfer learning from a convolutional neural network pretrained on optical imagery. Results from this unified framework will be presented on images of boulders collected during various surveys using a Kraken Robotics miniature SAS (MINSAS).","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Semantic Segmentation and Object Detection Framework for Synthetic Aperture Sonar Imagery\",\"authors\":\"Shannon-Morgan Steele\",\"doi\":\"10.1109/ICASSPW59220.2023.10193155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manually identifying objects in synthetic aperture sonar (SAS) imagery is costly and time consuming, making identification through computer vision and deep learning techniques an appealing alternative. Depending on the application, a generalized map (semantic segmentation) and/or a characterization of each individual object (object detection) may be desired. Here, we demonstrate a framework that allows us to simultaneously generate both semantic segmentation maps and object detections with a single deep learning model by chaining together a U-Net model with k-means clustering and connected components. This framework streamlines the model training phase by allowing us to utilize a set of semantically segmented training data to yield both semantic segmentation and bounding box predictions. We demonstrate that the deep learning model can achieve accurate predictions with a small training set through transfer learning from a convolutional neural network pretrained on optical imagery. Results from this unified framework will be presented on images of boulders collected during various surveys using a Kraken Robotics miniature SAS (MINSAS).\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工识别合成孔径声纳(SAS)图像中的物体既昂贵又耗时,因此通过计算机视觉和深度学习技术进行识别是一种有吸引力的选择。根据应用的不同,可能需要一个广义的映射(语义分割)和/或每个单独对象的特征(对象检测)。在这里,我们展示了一个框架,该框架允许我们通过将带有k-means聚类和连接组件的U-Net模型链接在一起,使用单个深度学习模型同时生成语义分割图和对象检测。这个框架通过允许我们利用一组语义分割的训练数据来产生语义分割和边界框预测,从而简化了模型训练阶段。我们证明了深度学习模型可以通过在光学图像上预训练的卷积神经网络的迁移学习,用一个小的训练集实现准确的预测。这个统一框架的结果将呈现在使用Kraken Robotics微型SAS (MINSAS)进行各种调查期间收集的巨石图像上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Semantic Segmentation and Object Detection Framework for Synthetic Aperture Sonar Imagery
Manually identifying objects in synthetic aperture sonar (SAS) imagery is costly and time consuming, making identification through computer vision and deep learning techniques an appealing alternative. Depending on the application, a generalized map (semantic segmentation) and/or a characterization of each individual object (object detection) may be desired. Here, we demonstrate a framework that allows us to simultaneously generate both semantic segmentation maps and object detections with a single deep learning model by chaining together a U-Net model with k-means clustering and connected components. This framework streamlines the model training phase by allowing us to utilize a set of semantically segmented training data to yield both semantic segmentation and bounding box predictions. We demonstrate that the deep learning model can achieve accurate predictions with a small training set through transfer learning from a convolutional neural network pretrained on optical imagery. Results from this unified framework will be presented on images of boulders collected during various surveys using a Kraken Robotics miniature SAS (MINSAS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信