具有全局存储的λ-微积分的交集类型

Ugo de'Liguoro, R. Treglia
{"title":"具有全局存储的λ-微积分的交集类型","authors":"Ugo de'Liguoro, R. Treglia","doi":"10.1145/3479394.3479400","DOIUrl":null,"url":null,"abstract":"We study the semantics of an untyped λ-calculus equipped with operators representing read and write operations from and to a global store. We adopt the monadic approach to model side effects and treat read and write as algebraic operations over a monad. We introduce an operational semantics and a type assignment system of intersection types, and prove that types are invariant under reduction and expansion of term and state configurations, and characterize convergent terms via their typings.","PeriodicalId":242361,"journal":{"name":"23rd International Symposium on Principles and Practice of Declarative Programming","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intersection types for a λ-calculus with global store\",\"authors\":\"Ugo de'Liguoro, R. Treglia\",\"doi\":\"10.1145/3479394.3479400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the semantics of an untyped λ-calculus equipped with operators representing read and write operations from and to a global store. We adopt the monadic approach to model side effects and treat read and write as algebraic operations over a monad. We introduce an operational semantics and a type assignment system of intersection types, and prove that types are invariant under reduction and expansion of term and state configurations, and characterize convergent terms via their typings.\",\"PeriodicalId\":242361,\"journal\":{\"name\":\"23rd International Symposium on Principles and Practice of Declarative Programming\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd International Symposium on Principles and Practice of Declarative Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3479394.3479400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd International Symposium on Principles and Practice of Declarative Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3479394.3479400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了一个无类型λ微积分的语义,该λ微积分具有表示从全局存储读取和写入操作的操作符。我们采用一元方法来模拟副作用,并将读和写视为在一元上的代数操作。引入了一种操作语义和一种交叉类型的类型赋值系统,证明了类型在项和状态组态的约简和展开下是不变的,并通过它们的类型来表征收敛项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection types for a λ-calculus with global store
We study the semantics of an untyped λ-calculus equipped with operators representing read and write operations from and to a global store. We adopt the monadic approach to model side effects and treat read and write as algebraic operations over a monad. We introduce an operational semantics and a type assignment system of intersection types, and prove that types are invariant under reduction and expansion of term and state configurations, and characterize convergent terms via their typings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信