{"title":"有限次原始序列的和","authors":"Ilias Laib, Nadir Rezzoug","doi":"10.20948/mathmontis-2022-53-4","DOIUrl":null,"url":null,"abstract":"A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős’s analogous conjecture for translated sums is not satisfied.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a sum over primitive sequences of finite degree\",\"authors\":\"Ilias Laib, Nadir Rezzoug\",\"doi\":\"10.20948/mathmontis-2022-53-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős’s analogous conjecture for translated sums is not satisfied.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2022-53-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2022-53-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a sum over primitive sequences of finite degree
A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős’s analogous conjecture for translated sums is not satisfied.