挖掘时间序列中的自相似度

Meina Song, Xiaosu Zhan, Junde Song
{"title":"挖掘时间序列中的自相似度","authors":"Meina Song, Xiaosu Zhan, Junde Song","doi":"10.5220/0002497501310136","DOIUrl":null,"url":null,"abstract":"Self-similarity can successfully characterize and forecast intricate, non-periodic and chaos time series avoiding the limitation of traditional methods on LRD (Long-Range Dependence). The potential principals will be found and the future unknown time series will be forecasted through foregoing training. Therefore it is important to mine the LRD by self-similarity analysis. In this paper, mining self-similarity of time series is introduced. And the practical value can be found from two cases study respectively for seasonvariable trend forecast and network traffic.","PeriodicalId":217890,"journal":{"name":"Computer Supported Acitivity Coordination","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining Self-similarity in Time Series\",\"authors\":\"Meina Song, Xiaosu Zhan, Junde Song\",\"doi\":\"10.5220/0002497501310136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-similarity can successfully characterize and forecast intricate, non-periodic and chaos time series avoiding the limitation of traditional methods on LRD (Long-Range Dependence). The potential principals will be found and the future unknown time series will be forecasted through foregoing training. Therefore it is important to mine the LRD by self-similarity analysis. In this paper, mining self-similarity of time series is introduced. And the practical value can be found from two cases study respectively for seasonvariable trend forecast and network traffic.\",\"PeriodicalId\":217890,\"journal\":{\"name\":\"Computer Supported Acitivity Coordination\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Supported Acitivity Coordination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0002497501310136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Acitivity Coordination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002497501310136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自相似可以成功地描述和预测复杂的、非周期的和混沌的时间序列,避免了传统方法对LRD (long - term Dependence)的限制。通过上述训练,发现潜在的主体,并预测未来未知的时间序列。因此,通过自相似分析来挖掘LRD具有重要的意义。本文介绍了时间序列的自相似度挖掘方法。并分别对季节变量趋势预测和网络流量进行了实例分析,发现了该方法的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Self-similarity in Time Series
Self-similarity can successfully characterize and forecast intricate, non-periodic and chaos time series avoiding the limitation of traditional methods on LRD (Long-Range Dependence). The potential principals will be found and the future unknown time series will be forecasted through foregoing training. Therefore it is important to mine the LRD by self-similarity analysis. In this paper, mining self-similarity of time series is introduced. And the practical value can be found from two cases study respectively for seasonvariable trend forecast and network traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信