{"title":"交互式基于位置的Web搜索的统一处理范例","authors":"Sheng Wang, Z. Bao, Shixun Huang, Rui Zhang","doi":"10.1145/3159652.3159667","DOIUrl":null,"url":null,"abstract":"This paper studies the location-based web search and aims to build a unified processing paradigm for two purposes: (1) efficiently support each of the various types of location-based queries (kNN query, top-k spatial-textual query, etc.) on two major forms of geo-tagged data, i.e., spatial point data such as geo-tagged web documents, and spatial trajectory data such as a sequence of geo-tagged travel blogs by a user; (2) support interactive search to provide quick response for a query session, within which a user usually keeps refining her query by either issuing different query types or specifying different constraints (e.g., adding a keyword and/or location, changing the choice of k, etc.) until she finds the desired results. To achieve this goal, we first propose a general Top-k query called Monotone Aggregate Spatial Keyword query-MASK, which is able to cover most types of location-based web search. Next, we develop a unified indexing (called Textual-Grid-Point Inverted Index) and query processing paradigm (called ETAIL Algorithm) to answer a single MASK query efficiently. Furthermore, we extend ETAIL to provide interactive search for multiple queries within one query session, by exploiting the commonality of textual and/or spatial dimension among queries. Last, extensive experiments on four real datasets verify the robustness and efficiency of our approach.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Unified Processing Paradigm for Interactive Location-based Web Search\",\"authors\":\"Sheng Wang, Z. Bao, Shixun Huang, Rui Zhang\",\"doi\":\"10.1145/3159652.3159667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the location-based web search and aims to build a unified processing paradigm for two purposes: (1) efficiently support each of the various types of location-based queries (kNN query, top-k spatial-textual query, etc.) on two major forms of geo-tagged data, i.e., spatial point data such as geo-tagged web documents, and spatial trajectory data such as a sequence of geo-tagged travel blogs by a user; (2) support interactive search to provide quick response for a query session, within which a user usually keeps refining her query by either issuing different query types or specifying different constraints (e.g., adding a keyword and/or location, changing the choice of k, etc.) until she finds the desired results. To achieve this goal, we first propose a general Top-k query called Monotone Aggregate Spatial Keyword query-MASK, which is able to cover most types of location-based web search. Next, we develop a unified indexing (called Textual-Grid-Point Inverted Index) and query processing paradigm (called ETAIL Algorithm) to answer a single MASK query efficiently. Furthermore, we extend ETAIL to provide interactive search for multiple queries within one query session, by exploiting the commonality of textual and/or spatial dimension among queries. Last, extensive experiments on four real datasets verify the robustness and efficiency of our approach.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3159667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Unified Processing Paradigm for Interactive Location-based Web Search
This paper studies the location-based web search and aims to build a unified processing paradigm for two purposes: (1) efficiently support each of the various types of location-based queries (kNN query, top-k spatial-textual query, etc.) on two major forms of geo-tagged data, i.e., spatial point data such as geo-tagged web documents, and spatial trajectory data such as a sequence of geo-tagged travel blogs by a user; (2) support interactive search to provide quick response for a query session, within which a user usually keeps refining her query by either issuing different query types or specifying different constraints (e.g., adding a keyword and/or location, changing the choice of k, etc.) until she finds the desired results. To achieve this goal, we first propose a general Top-k query called Monotone Aggregate Spatial Keyword query-MASK, which is able to cover most types of location-based web search. Next, we develop a unified indexing (called Textual-Grid-Point Inverted Index) and query processing paradigm (called ETAIL Algorithm) to answer a single MASK query efficiently. Furthermore, we extend ETAIL to provide interactive search for multiple queries within one query session, by exploiting the commonality of textual and/or spatial dimension among queries. Last, extensive experiments on four real datasets verify the robustness and efficiency of our approach.