对称群上的量子傅里叶变换

Y. Kawano, Hiroshi Sekigawa
{"title":"对称群上的量子傅里叶变换","authors":"Y. Kawano, Hiroshi Sekigawa","doi":"10.1145/2465506.2465940","DOIUrl":null,"url":null,"abstract":"This paper proposes an <i>O</i>(<i>n</i><sup>4</sup>) quantum Fourier transform (QFT) algorithm over symmetric group <i>S<sub>n</sub></i>, the fastest QFT algorithm of its kind. We propose a fast Fourier transform algorithm over symmetric group <i>S<sub>n</sub></i>, which consists of <i>O</i>(<i>n</i><sup>3</sup>) multiplications of unitary matrices, and then transform it into a quantum circuit form. The QFT algorithm can be applied to constructing the standard algorithm of the hidden subgroup problem.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quantum fourier transform over symmetric groups\",\"authors\":\"Y. Kawano, Hiroshi Sekigawa\",\"doi\":\"10.1145/2465506.2465940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an <i>O</i>(<i>n</i><sup>4</sup>) quantum Fourier transform (QFT) algorithm over symmetric group <i>S<sub>n</sub></i>, the fastest QFT algorithm of its kind. We propose a fast Fourier transform algorithm over symmetric group <i>S<sub>n</sub></i>, which consists of <i>O</i>(<i>n</i><sup>3</sup>) multiplications of unitary matrices, and then transform it into a quantum circuit form. The QFT algorithm can be applied to constructing the standard algorithm of the hidden subgroup problem.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种在对称群Sn上的O(n4)量子傅里叶变换(QFT)算法,这是同类算法中最快的QFT算法。本文提出了一种基于对称群Sn的快速傅里叶变换算法,该群Sn由O(n3)个酉矩阵相乘组成,并将其转换为量子电路形式。QFT算法可用于构造隐子群问题的标准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum fourier transform over symmetric groups
This paper proposes an O(n4) quantum Fourier transform (QFT) algorithm over symmetric group Sn, the fastest QFT algorithm of its kind. We propose a fast Fourier transform algorithm over symmetric group Sn, which consists of O(n3) multiplications of unitary matrices, and then transform it into a quantum circuit form. The QFT algorithm can be applied to constructing the standard algorithm of the hidden subgroup problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信