FedFace:人脸识别模型的协同学习

Divyansh Aggarwal, Jiayu Zhou, Anil K. Jain
{"title":"FedFace:人脸识别模型的协同学习","authors":"Divyansh Aggarwal, Jiayu Zhou, Anil K. Jain","doi":"10.1109/IJCB52358.2021.9484386","DOIUrl":null,"url":null,"abstract":"DNN-based face recognition models require large centrally aggregated face datasets for training. However, due to the growing data privacy concerns and legal restrictions, accessing and sharing face datasets has become exceedingly difficult. We propose FedFace, a federated learning (FL) framework for collaborative learning of face recognition models in a privacy aware manner. FedFace utilizes the face images available on multiple clients to learn an accurate and generalizable face recognition model where the face images stored at each client are neither shared with other clients nor the central host and each client is a mobile device containing face images pertaining to only the owner of the device (one identity per client). Our experiments show the effectiveness of FedFace in enhancing the verification performance of pre-trained face recognition system on standard face verification benchmarks namely LFW, IJB-A and IJB-C.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"FedFace: Collaborative Learning of Face Recognition Model\",\"authors\":\"Divyansh Aggarwal, Jiayu Zhou, Anil K. Jain\",\"doi\":\"10.1109/IJCB52358.2021.9484386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNN-based face recognition models require large centrally aggregated face datasets for training. However, due to the growing data privacy concerns and legal restrictions, accessing and sharing face datasets has become exceedingly difficult. We propose FedFace, a federated learning (FL) framework for collaborative learning of face recognition models in a privacy aware manner. FedFace utilizes the face images available on multiple clients to learn an accurate and generalizable face recognition model where the face images stored at each client are neither shared with other clients nor the central host and each client is a mobile device containing face images pertaining to only the owner of the device (one identity per client). Our experiments show the effectiveness of FedFace in enhancing the verification performance of pre-trained face recognition system on standard face verification benchmarks namely LFW, IJB-A and IJB-C.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

基于dnn的人脸识别模型需要大量集中聚合的人脸数据集进行训练。然而,由于越来越多的数据隐私问题和法律限制,访问和共享人脸数据集变得非常困难。我们提出了FedFace,一个联邦学习(FL)框架,用于以隐私意识方式协作学习人脸识别模型。FedFace利用多个客户端上可用的人脸图像来学习一个准确和通用的人脸识别模型,其中每个客户端存储的人脸图像既不与其他客户端共享,也不与中央主机共享,每个客户端都是一个移动设备,其中包含仅属于设备所有者的人脸图像(每个客户端一个身份)。我们的实验表明,在LFW、IJB-A和IJB-C标准人脸验证基准上,FedFace有效地提高了预训练人脸识别系统的验证性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FedFace: Collaborative Learning of Face Recognition Model
DNN-based face recognition models require large centrally aggregated face datasets for training. However, due to the growing data privacy concerns and legal restrictions, accessing and sharing face datasets has become exceedingly difficult. We propose FedFace, a federated learning (FL) framework for collaborative learning of face recognition models in a privacy aware manner. FedFace utilizes the face images available on multiple clients to learn an accurate and generalizable face recognition model where the face images stored at each client are neither shared with other clients nor the central host and each client is a mobile device containing face images pertaining to only the owner of the device (one identity per client). Our experiments show the effectiveness of FedFace in enhancing the verification performance of pre-trained face recognition system on standard face verification benchmarks namely LFW, IJB-A and IJB-C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信