基于深度递归神经网络的中文分词和标点符号联合预测

Kui Wu, Xuancong Wang, Nina Zhou, AiTi Aw, Haizhou Li
{"title":"基于深度递归神经网络的中文分词和标点符号联合预测","authors":"Kui Wu, Xuancong Wang, Nina Zhou, AiTi Aw, Haizhou Li","doi":"10.1109/IALP.2015.7451527","DOIUrl":null,"url":null,"abstract":"In this work, we propose to jointly perform Chinese word segmentation (CWS) and punctuation prediction (PU) in a unified framework using deep recurrent neural network (DRNN). We further perform a comparative study among the joint frameworks, the isolated prediction and the pipeline methods that link the two tasks sequentially, on a social media corpus. Our experimental results show that joint models improve performance of CWS and affect PU marginally. We also study the effects of CWS and PU on Chinese-to-English machine translation (MT) quality by evaluating on a parallel social media corpus. It is shown that joint models are superior to the isolated prediction and the pipeline approaches.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint Chinese word segmentation and punctuation prediction using deep recurrent neural network for social media data\",\"authors\":\"Kui Wu, Xuancong Wang, Nina Zhou, AiTi Aw, Haizhou Li\",\"doi\":\"10.1109/IALP.2015.7451527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose to jointly perform Chinese word segmentation (CWS) and punctuation prediction (PU) in a unified framework using deep recurrent neural network (DRNN). We further perform a comparative study among the joint frameworks, the isolated prediction and the pipeline methods that link the two tasks sequentially, on a social media corpus. Our experimental results show that joint models improve performance of CWS and affect PU marginally. We also study the effects of CWS and PU on Chinese-to-English machine translation (MT) quality by evaluating on a parallel social media corpus. It is shown that joint models are superior to the isolated prediction and the pipeline approaches.\",\"PeriodicalId\":256927,\"journal\":{\"name\":\"2015 International Conference on Asian Language Processing (IALP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2015.7451527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们提出在一个统一的框架中使用深度递归神经网络(DRNN)联合执行中文分词(CWS)和标点符号预测(PU)。我们进一步在一个社交媒体语料库上对联合框架、孤立预测和顺序连接两个任务的管道方法进行了比较研究。我们的实验结果表明,接缝模型提高了CWS的性能,但对PU的影响很小。我们还通过在一个平行的社交媒体语料库上评估CWS和PU对汉英机器翻译质量的影响。结果表明,联合模型优于孤立预测和管道方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Chinese word segmentation and punctuation prediction using deep recurrent neural network for social media data
In this work, we propose to jointly perform Chinese word segmentation (CWS) and punctuation prediction (PU) in a unified framework using deep recurrent neural network (DRNN). We further perform a comparative study among the joint frameworks, the isolated prediction and the pipeline methods that link the two tasks sequentially, on a social media corpus. Our experimental results show that joint models improve performance of CWS and affect PU marginally. We also study the effects of CWS and PU on Chinese-to-English machine translation (MT) quality by evaluating on a parallel social media corpus. It is shown that joint models are superior to the isolated prediction and the pipeline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信