net:时间序列的网络估计

M. Barigozzi, C. Brownlees
{"title":"net:时间序列的网络估计","authors":"M. Barigozzi, C. Brownlees","doi":"10.2139/ssrn.2249909","DOIUrl":null,"url":null,"abstract":"This work proposes novel network analysis techniques for multivariate time series. We define the network of a multivariate time series as a graph where vertices denote the components of the process and edges denote non zero long run partial correlations. We then introduce a two step LASSO procedure, called NETS, to estimate high dimensional sparse Long Run Partial Correlation networks. This approach is based on a VAR approximation of the process and allows to decompose the long run linkages into the contribution of the dynamic and contemporaneous dependence relations of the system. The large sample properties of the estimator are analysed and we establish conditions for consistent selection and estimation of the non zero long run partial correlations. The methodology is illustrated with an application to a panel of U.S. bluechips.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"174","resultStr":"{\"title\":\"NETS: Network Estimation for Time Series\",\"authors\":\"M. Barigozzi, C. Brownlees\",\"doi\":\"10.2139/ssrn.2249909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes novel network analysis techniques for multivariate time series. We define the network of a multivariate time series as a graph where vertices denote the components of the process and edges denote non zero long run partial correlations. We then introduce a two step LASSO procedure, called NETS, to estimate high dimensional sparse Long Run Partial Correlation networks. This approach is based on a VAR approximation of the process and allows to decompose the long run linkages into the contribution of the dynamic and contemporaneous dependence relations of the system. The large sample properties of the estimator are analysed and we establish conditions for consistent selection and estimation of the non zero long run partial correlations. The methodology is illustrated with an application to a panel of U.S. bluechips.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"174\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2249909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2249909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 174

摘要

这项工作提出了新的网络分析技术的多元时间序列。我们将多元时间序列的网络定义为一个图,其中顶点表示过程的组成部分,边缘表示非零的长期偏相关。然后,我们引入了一个两步LASSO过程,称为NETS,来估计高维稀疏长期部分相关网络。这种方法基于过程的VAR近似,并允许将长期联系分解为系统的动态和同期依赖关系的贡献。分析了估计量的大样本性质,建立了非零长期偏相关的一致性选择和估计的条件。以一组美国蓝筹股为例说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NETS: Network Estimation for Time Series
This work proposes novel network analysis techniques for multivariate time series. We define the network of a multivariate time series as a graph where vertices denote the components of the process and edges denote non zero long run partial correlations. We then introduce a two step LASSO procedure, called NETS, to estimate high dimensional sparse Long Run Partial Correlation networks. This approach is based on a VAR approximation of the process and allows to decompose the long run linkages into the contribution of the dynamic and contemporaneous dependence relations of the system. The large sample properties of the estimator are analysed and we establish conditions for consistent selection and estimation of the non zero long run partial correlations. The methodology is illustrated with an application to a panel of U.S. bluechips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信