基于多项式特征值分解的分布式麦克风阵列语音增强

Emilie D'Olne, Vincent W. Neo, P. Naylor
{"title":"基于多项式特征值分解的分布式麦克风阵列语音增强","authors":"Emilie D'Olne, Vincent W. Neo, P. Naylor","doi":"10.23919/eusipco55093.2022.9909555","DOIUrl":null,"url":null,"abstract":"As the number of connected devices equipped with multiple microphones increases, scientific interest in distributed microphone array processing grows. Current beamforming methods heavily rely on estimating quantities related to array geometry, which is extremely challenging in real, non-stationary environments. Recent work on polynomial eigenvalue decomposition (PEVD) has shown promising results for speech enhancement in singular arrays without requiring the estimation of any array-related parameter [1]. This work extends these results to the realm of distributed microphone arrays, and further presents a novel framework for speech enhancement in distributed microphone arrays using PEVD. The proposed approach is shown to almost always outperform optimum beamformers located at arrays closest to the desired speaker. Moreover, the proposed approach exhibits very strong robustness to steering vector errors.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Speech Enhancement in Distributed Microphone Arrays Using Polynomial Eigenvalue Decomposition\",\"authors\":\"Emilie D'Olne, Vincent W. Neo, P. Naylor\",\"doi\":\"10.23919/eusipco55093.2022.9909555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of connected devices equipped with multiple microphones increases, scientific interest in distributed microphone array processing grows. Current beamforming methods heavily rely on estimating quantities related to array geometry, which is extremely challenging in real, non-stationary environments. Recent work on polynomial eigenvalue decomposition (PEVD) has shown promising results for speech enhancement in singular arrays without requiring the estimation of any array-related parameter [1]. This work extends these results to the realm of distributed microphone arrays, and further presents a novel framework for speech enhancement in distributed microphone arrays using PEVD. The proposed approach is shown to almost always outperform optimum beamformers located at arrays closest to the desired speaker. Moreover, the proposed approach exhibits very strong robustness to steering vector errors.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着配备多个麦克风的连接设备数量的增加,对分布式麦克风阵列处理的科学兴趣也在增长。目前的波束形成方法严重依赖于与阵列几何形状相关的估计量,这在真实的非平稳环境中极具挑战性。最近对多项式特征值分解(PEVD)的研究表明,在不需要估计任何与阵列相关的参数的情况下,奇异阵列的语音增强结果很有希望[1]。这项工作将这些结果扩展到分布式麦克风阵列领域,并进一步提出了一个使用PEVD在分布式麦克风阵列中进行语音增强的新框架。所提出的方法几乎总是优于位于最靠近所需扬声器的阵列的最佳波束形成器。此外,该方法对转向矢量误差具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Enhancement in Distributed Microphone Arrays Using Polynomial Eigenvalue Decomposition
As the number of connected devices equipped with multiple microphones increases, scientific interest in distributed microphone array processing grows. Current beamforming methods heavily rely on estimating quantities related to array geometry, which is extremely challenging in real, non-stationary environments. Recent work on polynomial eigenvalue decomposition (PEVD) has shown promising results for speech enhancement in singular arrays without requiring the estimation of any array-related parameter [1]. This work extends these results to the realm of distributed microphone arrays, and further presents a novel framework for speech enhancement in distributed microphone arrays using PEVD. The proposed approach is shown to almost always outperform optimum beamformers located at arrays closest to the desired speaker. Moreover, the proposed approach exhibits very strong robustness to steering vector errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信