基于扩展SVM-RFE和Markov毯的SELDI-TOF质谱数据多类别分类

J. Oh, Jean X. Gao, A. Nandi, Prem Gurnani, Lynne Knowles, J. Schorge, K. Rosenblatt
{"title":"基于扩展SVM-RFE和Markov毯的SELDI-TOF质谱数据多类别分类","authors":"J. Oh, Jean X. Gao, A. Nandi, Prem Gurnani, Lynne Knowles, J. Schorge, K. Rosenblatt","doi":"10.1109/CIBCB.2005.1594938","DOIUrl":null,"url":null,"abstract":"Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry data has been increasingly analyzed for identifying biomarkers for disease to help early detection of the disease. Recently, support vector machine (SVM) algorithm based on recursive feature elimination (RFE) was proposed to find a set of genes for cancer classification. In our study, we extend the SVM-RFE such that it can be used in the multicategory classification work using SELDI-TOF mass spectrometry data and propose a new feature selection algorithm (SVM-MB/RFE : SVM-Markov Blanket/Recursive Feature Elimination). In the preprocessing task of SVM-MB/RFE, ANOVA (Analysis of Variance) and binning methods are used for feature filtering. We demonstrate that the performance is improved through the preprocessing work. Compared with other methods such as not only SVM-RFE and Markov blanket but also PCA (Principle Components Analysis)+LDA (Linear Discriminant Analysis) and other feature selection algorithms, SVM-MB/RFE performs better than them.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multicategory Classification using Extended SVM-RFE and Markov Blanket on SELDI-TOF Mass Spectrometry Data\",\"authors\":\"J. Oh, Jean X. Gao, A. Nandi, Prem Gurnani, Lynne Knowles, J. Schorge, K. Rosenblatt\",\"doi\":\"10.1109/CIBCB.2005.1594938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry data has been increasingly analyzed for identifying biomarkers for disease to help early detection of the disease. Recently, support vector machine (SVM) algorithm based on recursive feature elimination (RFE) was proposed to find a set of genes for cancer classification. In our study, we extend the SVM-RFE such that it can be used in the multicategory classification work using SELDI-TOF mass spectrometry data and propose a new feature selection algorithm (SVM-MB/RFE : SVM-Markov Blanket/Recursive Feature Elimination). In the preprocessing task of SVM-MB/RFE, ANOVA (Analysis of Variance) and binning methods are used for feature filtering. We demonstrate that the performance is improved through the preprocessing work. Compared with other methods such as not only SVM-RFE and Markov blanket but also PCA (Principle Components Analysis)+LDA (Linear Discriminant Analysis) and other feature selection algorithms, SVM-MB/RFE performs better than them.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

表面增强激光解吸/电离飞行时间(SELDI-TOF)质谱分析数据越来越多地用于识别疾病的生物标志物,以帮助早期发现疾病。近年来,基于递归特征消除(RFE)的支持向量机(SVM)算法被提出用于寻找一组用于癌症分类的基因。在我们的研究中,我们扩展了SVM-RFE,使其可以用于使用SELDI-TOF质谱数据的多类别分类工作,并提出了一种新的特征选择算法(SVM-MB/RFE: SVM-Markov毯子/递归特征消除)。在SVM-MB/RFE的预处理任务中,使用方差分析(ANOVA)和分箱方法进行特征滤波。我们证明,通过预处理工作,性能得到了提高。与SVM-RFE、Markov毯等其他特征选择方法相比,与PCA (principal Components Analysis)+LDA (Linear Discriminant Analysis)等特征选择算法相比,SVM-MB/RFE表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicategory Classification using Extended SVM-RFE and Markov Blanket on SELDI-TOF Mass Spectrometry Data
Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry data has been increasingly analyzed for identifying biomarkers for disease to help early detection of the disease. Recently, support vector machine (SVM) algorithm based on recursive feature elimination (RFE) was proposed to find a set of genes for cancer classification. In our study, we extend the SVM-RFE such that it can be used in the multicategory classification work using SELDI-TOF mass spectrometry data and propose a new feature selection algorithm (SVM-MB/RFE : SVM-Markov Blanket/Recursive Feature Elimination). In the preprocessing task of SVM-MB/RFE, ANOVA (Analysis of Variance) and binning methods are used for feature filtering. We demonstrate that the performance is improved through the preprocessing work. Compared with other methods such as not only SVM-RFE and Markov blanket but also PCA (Principle Components Analysis)+LDA (Linear Discriminant Analysis) and other feature selection algorithms, SVM-MB/RFE performs better than them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信