基于粒子群算法优化极限学习机的铜矿区重金属含量反演

Xinyue Zhang, X. Niu, Fengyan Wang, Xu Zeshuang, Xuqing Zhang, Shengbo Chen, Mingchang Wang
{"title":"基于粒子群算法优化极限学习机的铜矿区重金属含量反演","authors":"Xinyue Zhang, X. Niu, Fengyan Wang, Xu Zeshuang, Xuqing Zhang, Shengbo Chen, Mingchang Wang","doi":"10.1109/PRRS.2018.8486172","DOIUrl":null,"url":null,"abstract":"A model to estimate heavy metal content based on spectral analysis can provide the theory and method to rapidly obtain the heavy metal content in leaves. This study established a multiple stepwise regression model for selecting sensitive spectral bands, then used an extreme learning machine model optimized by particle swarm algorithm (PSOELM) to invert the contents of six metals in leaves in the Duobaoshan copper mine area in Heilongjiang Province, China. The results show that the Cu content of some leaves decreased with the distance from the copper mine therefore, the heavy metal content of leaves is related to mineral information. The PSOELM model is superior to both the back propagation model and extreme learning machine models in inversion accuracy and trend analysis.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inversion of Heavy Metal Content in a Copper Mining Area Based on Extreme Learning Machine Optimized by Particle Swarm Algorithm\",\"authors\":\"Xinyue Zhang, X. Niu, Fengyan Wang, Xu Zeshuang, Xuqing Zhang, Shengbo Chen, Mingchang Wang\",\"doi\":\"10.1109/PRRS.2018.8486172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model to estimate heavy metal content based on spectral analysis can provide the theory and method to rapidly obtain the heavy metal content in leaves. This study established a multiple stepwise regression model for selecting sensitive spectral bands, then used an extreme learning machine model optimized by particle swarm algorithm (PSOELM) to invert the contents of six metals in leaves in the Duobaoshan copper mine area in Heilongjiang Province, China. The results show that the Cu content of some leaves decreased with the distance from the copper mine therefore, the heavy metal content of leaves is related to mineral information. The PSOELM model is superior to both the back propagation model and extreme learning machine models in inversion accuracy and trend analysis.\",\"PeriodicalId\":197319,\"journal\":{\"name\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRRS.2018.8486172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于光谱分析的重金属含量估算模型可为快速获取叶片重金属含量提供理论和方法。建立多元逐步回归模型,选取敏感光谱波段,利用粒子群算法(PSOELM)优化的极限学习机模型反演黑龙江省多宝山铜矿区叶片中6种金属的含量。结果表明,随着离铜矿距离的增加,部分叶片的Cu含量逐渐降低,表明叶片中重金属含量与矿物信息有关。PSOELM模型在反演精度和趋势分析方面都优于反向传播模型和极限学习机模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inversion of Heavy Metal Content in a Copper Mining Area Based on Extreme Learning Machine Optimized by Particle Swarm Algorithm
A model to estimate heavy metal content based on spectral analysis can provide the theory and method to rapidly obtain the heavy metal content in leaves. This study established a multiple stepwise regression model for selecting sensitive spectral bands, then used an extreme learning machine model optimized by particle swarm algorithm (PSOELM) to invert the contents of six metals in leaves in the Duobaoshan copper mine area in Heilongjiang Province, China. The results show that the Cu content of some leaves decreased with the distance from the copper mine therefore, the heavy metal content of leaves is related to mineral information. The PSOELM model is superior to both the back propagation model and extreme learning machine models in inversion accuracy and trend analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信