{"title":"基于内容视觉特征分析的语言教学视频片段分割与索引研究","authors":"Heejun Han","doi":"10.3743/KOSIM.2017.34.1.219","DOIUrl":null,"url":null,"abstract":"As IT technology develops rapidly and the personal dissemination of smart devices increases, video material is especially used as a medium of information transmission among audiovisual materials. Video as an information service content has become an indispensable element, and it has been used in various ways such as unidirectional delivery through TV, interactive service through the Internet, and audiovisual library borrowing. Especially, in the Internet environment, the information provider tries to reduce the effort and cost for the processing of the provided information in view of the video service through the smart device. In addition, users want to utilize only the desired parts because of the burden on excessive network usage, time and space constraints. Therefore, it is necessary to enhance the usability of the video by automatically classifying, summarizing, and indexing similar parts of the contents. In this paper, we propose a method of automatically segmenting the shots that make up videos by analyzing the contents and characteristics of language education videos and indexing the detailed contents information of the linguistic videos by combining visual features. The accuracy of the semantic based shot segmentation is high, and it can be effectively applied to the summary service of language education videos.","PeriodicalId":254159,"journal":{"name":"Journal of The Korean Society for Information Management","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Shot Segmentation and Indexing of Language Education Videos by Content-based Visual Feature Analysis\",\"authors\":\"Heejun Han\",\"doi\":\"10.3743/KOSIM.2017.34.1.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As IT technology develops rapidly and the personal dissemination of smart devices increases, video material is especially used as a medium of information transmission among audiovisual materials. Video as an information service content has become an indispensable element, and it has been used in various ways such as unidirectional delivery through TV, interactive service through the Internet, and audiovisual library borrowing. Especially, in the Internet environment, the information provider tries to reduce the effort and cost for the processing of the provided information in view of the video service through the smart device. In addition, users want to utilize only the desired parts because of the burden on excessive network usage, time and space constraints. Therefore, it is necessary to enhance the usability of the video by automatically classifying, summarizing, and indexing similar parts of the contents. In this paper, we propose a method of automatically segmenting the shots that make up videos by analyzing the contents and characteristics of language education videos and indexing the detailed contents information of the linguistic videos by combining visual features. The accuracy of the semantic based shot segmentation is high, and it can be effectively applied to the summary service of language education videos.\",\"PeriodicalId\":254159,\"journal\":{\"name\":\"Journal of The Korean Society for Information Management\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Korean Society for Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3743/KOSIM.2017.34.1.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Korean Society for Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3743/KOSIM.2017.34.1.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study on Shot Segmentation and Indexing of Language Education Videos by Content-based Visual Feature Analysis
As IT technology develops rapidly and the personal dissemination of smart devices increases, video material is especially used as a medium of information transmission among audiovisual materials. Video as an information service content has become an indispensable element, and it has been used in various ways such as unidirectional delivery through TV, interactive service through the Internet, and audiovisual library borrowing. Especially, in the Internet environment, the information provider tries to reduce the effort and cost for the processing of the provided information in view of the video service through the smart device. In addition, users want to utilize only the desired parts because of the burden on excessive network usage, time and space constraints. Therefore, it is necessary to enhance the usability of the video by automatically classifying, summarizing, and indexing similar parts of the contents. In this paper, we propose a method of automatically segmenting the shots that make up videos by analyzing the contents and characteristics of language education videos and indexing the detailed contents information of the linguistic videos by combining visual features. The accuracy of the semantic based shot segmentation is high, and it can be effectively applied to the summary service of language education videos.