使用MapReduce的文本挖掘应用的分布式查找架构

A. S. Balkir, Ian T Foster, A. Rzhetsky
{"title":"使用MapReduce的文本挖掘应用的分布式查找架构","authors":"A. S. Balkir, Ian T Foster, A. Rzhetsky","doi":"10.1145/2063384.2063463","DOIUrl":null,"url":null,"abstract":"We study text analysis algorithms that use global optimization methods to compute local characteristics that are consistent with properties of the entire corpus rather than computed locally based on exogenous parameters. In the iterative implementations that we consider, each step both reads and updates a database of parameter values. Motivated by a need for rapid analysis of large corpora, we have developed methods for efficient access to such databases on parallel computers. These methods combine Bloom filters, in-memory caches, and an HBase cluster to reduce communication costs greatly relative to simpler approaches that either fully distribute or fully replicate the database. We also describe how this method can be incorporated into the MapReduce programming model, and illustrate its use within phrase segmentation programs. Our design can achieve considerable run time, latency and storage space improvements relative to other methods. In one phrase segmentation application, we improve performance by a factor of six relative to an HBase-based implementation.","PeriodicalId":199020,"journal":{"name":"Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A distributed look-up architecture for text mining applications using MapReduce\",\"authors\":\"A. S. Balkir, Ian T Foster, A. Rzhetsky\",\"doi\":\"10.1145/2063384.2063463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study text analysis algorithms that use global optimization methods to compute local characteristics that are consistent with properties of the entire corpus rather than computed locally based on exogenous parameters. In the iterative implementations that we consider, each step both reads and updates a database of parameter values. Motivated by a need for rapid analysis of large corpora, we have developed methods for efficient access to such databases on parallel computers. These methods combine Bloom filters, in-memory caches, and an HBase cluster to reduce communication costs greatly relative to simpler approaches that either fully distribute or fully replicate the database. We also describe how this method can be incorporated into the MapReduce programming model, and illustrate its use within phrase segmentation programs. Our design can achieve considerable run time, latency and storage space improvements relative to other methods. In one phrase segmentation application, we improve performance by a factor of six relative to an HBase-based implementation.\",\"PeriodicalId\":199020,\"journal\":{\"name\":\"Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063384.2063463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063384.2063463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了文本分析算法,该算法使用全局优化方法来计算与整个语料库属性一致的局部特征,而不是基于外生参数进行局部计算。在我们考虑的迭代实现中,每一步都读取和更新参数值的数据库。由于需要对大型语料库进行快速分析,我们开发了在并行计算机上有效访问此类数据库的方法。这些方法结合了Bloom过滤器、内存缓存和HBase集群,相对于完全分布或完全复制数据库的简单方法,大大降低了通信成本。我们还描述了如何将这种方法整合到MapReduce编程模型中,并说明了它在短语分割程序中的使用。与其他方法相比,我们的设计可以实现相当大的运行时间、延迟和存储空间改进。在一个短语分割应用程序中,相对于基于hbase的实现,我们将性能提高了六倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A distributed look-up architecture for text mining applications using MapReduce
We study text analysis algorithms that use global optimization methods to compute local characteristics that are consistent with properties of the entire corpus rather than computed locally based on exogenous parameters. In the iterative implementations that we consider, each step both reads and updates a database of parameter values. Motivated by a need for rapid analysis of large corpora, we have developed methods for efficient access to such databases on parallel computers. These methods combine Bloom filters, in-memory caches, and an HBase cluster to reduce communication costs greatly relative to simpler approaches that either fully distribute or fully replicate the database. We also describe how this method can be incorporated into the MapReduce programming model, and illustrate its use within phrase segmentation programs. Our design can achieve considerable run time, latency and storage space improvements relative to other methods. In one phrase segmentation application, we improve performance by a factor of six relative to an HBase-based implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信