选举-调查算法在非线性约束优化问题中的应用研究

He Chun-hua, Zhang Xiang-wei, L. Wen-ge, Xie Qing-hua
{"title":"选举-调查算法在非线性约束优化问题中的应用研究","authors":"He Chun-hua, Zhang Xiang-wei, L. Wen-ge, Xie Qing-hua","doi":"10.1109/ICIC.2010.208","DOIUrl":null,"url":null,"abstract":"For the nonlinear constrained optimization problems, election-survey algorithm is combined with dynamic penalty function method to get the optimum in order to demonstrate solving capability of the algorithm. The tests of classic function and engineering optimization application model show that the election-survey algorithm can constringe rapidly to global optimal solution and achieve better optimization solution of objective function. It is feasible and effective in solving nonlinear constrained optimal problems, and available for engineering optimization.","PeriodicalId":176212,"journal":{"name":"2010 Third International Conference on Information and Computing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Application of Election-Survey Algorithm for Nonlinear Constrained Optimization Problems\",\"authors\":\"He Chun-hua, Zhang Xiang-wei, L. Wen-ge, Xie Qing-hua\",\"doi\":\"10.1109/ICIC.2010.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the nonlinear constrained optimization problems, election-survey algorithm is combined with dynamic penalty function method to get the optimum in order to demonstrate solving capability of the algorithm. The tests of classic function and engineering optimization application model show that the election-survey algorithm can constringe rapidly to global optimal solution and achieve better optimization solution of objective function. It is feasible and effective in solving nonlinear constrained optimal problems, and available for engineering optimization.\",\"PeriodicalId\":176212,\"journal\":{\"name\":\"2010 Third International Conference on Information and Computing\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2010.208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2010.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对非线性约束优化问题,将选举调查算法与动态惩罚函数法相结合,得到最优解,以证明算法的求解能力。经典函数和工程优化应用模型的试验表明,选测算法能快速收敛到全局最优解,并获得较好的目标函数最优解。该方法具有求解非线性约束优化问题的可行性和有效性,可用于工程优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the Application of Election-Survey Algorithm for Nonlinear Constrained Optimization Problems
For the nonlinear constrained optimization problems, election-survey algorithm is combined with dynamic penalty function method to get the optimum in order to demonstrate solving capability of the algorithm. The tests of classic function and engineering optimization application model show that the election-survey algorithm can constringe rapidly to global optimal solution and achieve better optimization solution of objective function. It is feasible and effective in solving nonlinear constrained optimal problems, and available for engineering optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信