Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Y. Lin, Norbou Buchler
{"title":"TEAMOPT:大网络中的交互式团队优化","authors":"Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Y. Lin, Norbou Buchler","doi":"10.1145/2983323.2983340","DOIUrl":null,"url":null,"abstract":"The science of team science is a rapidly emerging research field that studies strategies to understand and enhance the process and outcomes of collaborative, team-based research. An interesting research question we address in this work is how to maintain and optimize the team performance should certain changes happen to the team. In particular, we take the network approach to understanding the teams and consider optimizing the teams with several operations (e.g., replacement, expansion, shrinkage). We develop TEAMOPT, a system to assist users in optimizing the team performance interactively to support the changes to a team. TEAMOPT takes as input a large network of individuals (e.g., co-author network of researchers) and is able to assist users in assembling a team with specific requirements and optimizing the team in response to the changes made to the team. It is effective in finding the best candidates, and interactive with users' feedback in the loop. The system is developed using HTML5, JavaScript, D3.js (front-end) and Python CGI (back-end). A prototype system is already deployed. We will invite the audience to experiment with our TEAMOPT in terms of its effectiveness, efficiency and applicability to various scenarios.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"TEAMOPT: Interactive Team Optimization in Big Networks\",\"authors\":\"Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Y. Lin, Norbou Buchler\",\"doi\":\"10.1145/2983323.2983340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The science of team science is a rapidly emerging research field that studies strategies to understand and enhance the process and outcomes of collaborative, team-based research. An interesting research question we address in this work is how to maintain and optimize the team performance should certain changes happen to the team. In particular, we take the network approach to understanding the teams and consider optimizing the teams with several operations (e.g., replacement, expansion, shrinkage). We develop TEAMOPT, a system to assist users in optimizing the team performance interactively to support the changes to a team. TEAMOPT takes as input a large network of individuals (e.g., co-author network of researchers) and is able to assist users in assembling a team with specific requirements and optimizing the team in response to the changes made to the team. It is effective in finding the best candidates, and interactive with users' feedback in the loop. The system is developed using HTML5, JavaScript, D3.js (front-end) and Python CGI (back-end). A prototype system is already deployed. We will invite the audience to experiment with our TEAMOPT in terms of its effectiveness, efficiency and applicability to various scenarios.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TEAMOPT: Interactive Team Optimization in Big Networks
The science of team science is a rapidly emerging research field that studies strategies to understand and enhance the process and outcomes of collaborative, team-based research. An interesting research question we address in this work is how to maintain and optimize the team performance should certain changes happen to the team. In particular, we take the network approach to understanding the teams and consider optimizing the teams with several operations (e.g., replacement, expansion, shrinkage). We develop TEAMOPT, a system to assist users in optimizing the team performance interactively to support the changes to a team. TEAMOPT takes as input a large network of individuals (e.g., co-author network of researchers) and is able to assist users in assembling a team with specific requirements and optimizing the team in response to the changes made to the team. It is effective in finding the best candidates, and interactive with users' feedback in the loop. The system is developed using HTML5, JavaScript, D3.js (front-end) and Python CGI (back-end). A prototype system is already deployed. We will invite the audience to experiment with our TEAMOPT in terms of its effectiveness, efficiency and applicability to various scenarios.