具有可变传播操作和适当深度的解耦图神经结构搜索

Jianliang Gao, Changlong He, Jiamin Chen, Qiutong Li, Yili Wang
{"title":"具有可变传播操作和适当深度的解耦图神经结构搜索","authors":"Jianliang Gao, Changlong He, Jiamin Chen, Qiutong Li, Yili Wang","doi":"10.1145/3603719.3603729","DOIUrl":null,"url":null,"abstract":"To alleviate the over-smoothing problem caused by deep graph neural networks, decoupled graph neural networks (DGNNs) are proposed. DGNNs decouple the graph neural network into two atomic operations, the propagation (P) operation and the transformation (T) operation. Since manually designing the architecture of DGNNs is a time-consuming and expert-dependent process, the DF-GNAS method is designed, which can automatically construct the architecture of DGNNs with fixed propagation operation and deep layers. The propagation operation is a key process for DGNNs to aggregate graph structure information. However, DF-GNAS automatically designs DGNN architecture using fixed propagation operation for different graph structures will cause performance loss. Meanwhile, DF-GNAS designs deep DGNNs for graphs with simple distributions, which may lead to overfitting problems. To solve the above challenges, we propose the Decoupled Graph Neural Architecture Search with Variable Propagation Operation and Appropriate Depth (DGNAS-PD) method. In DGNAS-PD, we design a DGNN operation space with variable efficient propagation operations in order to better aggregate information on different graph structures. We build an effective genetic search strategy to adaptively design appropriate DGNN depths instead of deep DGNNs for the graph with simple distributions in DGNAS-PD. The experiments on five real-world graphs show that DGNAS-PD outperforms state-of-art baseline methods.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupled Graph Neural Architecture Search with Variable Propagation Operation and Appropriate Depth\",\"authors\":\"Jianliang Gao, Changlong He, Jiamin Chen, Qiutong Li, Yili Wang\",\"doi\":\"10.1145/3603719.3603729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To alleviate the over-smoothing problem caused by deep graph neural networks, decoupled graph neural networks (DGNNs) are proposed. DGNNs decouple the graph neural network into two atomic operations, the propagation (P) operation and the transformation (T) operation. Since manually designing the architecture of DGNNs is a time-consuming and expert-dependent process, the DF-GNAS method is designed, which can automatically construct the architecture of DGNNs with fixed propagation operation and deep layers. The propagation operation is a key process for DGNNs to aggregate graph structure information. However, DF-GNAS automatically designs DGNN architecture using fixed propagation operation for different graph structures will cause performance loss. Meanwhile, DF-GNAS designs deep DGNNs for graphs with simple distributions, which may lead to overfitting problems. To solve the above challenges, we propose the Decoupled Graph Neural Architecture Search with Variable Propagation Operation and Appropriate Depth (DGNAS-PD) method. In DGNAS-PD, we design a DGNN operation space with variable efficient propagation operations in order to better aggregate information on different graph structures. We build an effective genetic search strategy to adaptively design appropriate DGNN depths instead of deep DGNNs for the graph with simple distributions in DGNAS-PD. The experiments on five real-world graphs show that DGNAS-PD outperforms state-of-art baseline methods.\",\"PeriodicalId\":314512,\"journal\":{\"name\":\"Proceedings of the 35th International Conference on Scientific and Statistical Database Management\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 35th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603719.3603729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了缓解深度图神经网络的过度平滑问题,提出了解耦图神经网络(dgnn)。dgnn将图神经网络解耦为两个原子操作,即传播(P)操作和转换(T)操作。针对人工设计dgnn结构耗时且依赖专家的特点,设计了DF-GNAS方法,该方法能够自动构建具有固定传播运算和深层的dgnn结构。传播运算是dgnn实现图结构信息聚合的关键过程。但是,DF-GNAS对不同的图结构采用固定的传播操作自动设计DGNN架构,会造成性能损失。同时,DF-GNAS为简单分布的图设计了深度dgnn,这可能会导致过拟合问题。为了解决上述问题,我们提出了基于变量传播操作和适当深度的解耦图神经结构搜索(DGNAS-PD)方法。在DGNAS-PD中,为了更好地聚合不同图结构上的信息,我们设计了一个具有可变有效传播操作的DGNN操作空间。我们构建了一种有效的遗传搜索策略来自适应地设计合适的DGNN深度,而不是DGNAS-PD中具有简单分布的图的深度DGNN。在五个真实图形上的实验表明,DGNAS-PD优于最先进的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupled Graph Neural Architecture Search with Variable Propagation Operation and Appropriate Depth
To alleviate the over-smoothing problem caused by deep graph neural networks, decoupled graph neural networks (DGNNs) are proposed. DGNNs decouple the graph neural network into two atomic operations, the propagation (P) operation and the transformation (T) operation. Since manually designing the architecture of DGNNs is a time-consuming and expert-dependent process, the DF-GNAS method is designed, which can automatically construct the architecture of DGNNs with fixed propagation operation and deep layers. The propagation operation is a key process for DGNNs to aggregate graph structure information. However, DF-GNAS automatically designs DGNN architecture using fixed propagation operation for different graph structures will cause performance loss. Meanwhile, DF-GNAS designs deep DGNNs for graphs with simple distributions, which may lead to overfitting problems. To solve the above challenges, we propose the Decoupled Graph Neural Architecture Search with Variable Propagation Operation and Appropriate Depth (DGNAS-PD) method. In DGNAS-PD, we design a DGNN operation space with variable efficient propagation operations in order to better aggregate information on different graph structures. We build an effective genetic search strategy to adaptively design appropriate DGNN depths instead of deep DGNNs for the graph with simple distributions in DGNAS-PD. The experiments on five real-world graphs show that DGNAS-PD outperforms state-of-art baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信