指数锥上的投影:一个单变量求根问题

Henrik A. Friberg
{"title":"指数锥上的投影:一个单变量求根问题","authors":"Henrik A. Friberg","doi":"10.1080/10556788.2021.2022147","DOIUrl":null,"url":null,"abstract":"The exponential function and its logarithmic counterpart are essential corner stones of nonlinear mathematical modelling. In this paper, we treat their conic extensions, the exponential cone and the relative entropy cone, in primal, dual and polar form, and show that finding the nearest mapping of a point onto these convex sets all reduce to a single univariate root-finding problem. This leads to a fast projection algorithm shown numerically robust over a wide range of inputs.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Projection onto the exponential cone: a univariate root-finding problem\",\"authors\":\"Henrik A. Friberg\",\"doi\":\"10.1080/10556788.2021.2022147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exponential function and its logarithmic counterpart are essential corner stones of nonlinear mathematical modelling. In this paper, we treat their conic extensions, the exponential cone and the relative entropy cone, in primal, dual and polar form, and show that finding the nearest mapping of a point onto these convex sets all reduce to a single univariate root-finding problem. This leads to a fast projection algorithm shown numerically robust over a wide range of inputs.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2021.2022147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.2022147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

指数函数及其对应的对数函数是非线性数学建模的重要基石。在本文中,我们以原始形式、对偶形式和极坐标形式处理它们的圆锥扩展,指数锥和相对熵锥,并证明在这些凸集上寻找点的最近映射都可以归结为一个单变量寻根问题。这导致了一种快速投影算法,在广泛的输入范围内显示出数值上的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projection onto the exponential cone: a univariate root-finding problem
The exponential function and its logarithmic counterpart are essential corner stones of nonlinear mathematical modelling. In this paper, we treat their conic extensions, the exponential cone and the relative entropy cone, in primal, dual and polar form, and show that finding the nearest mapping of a point onto these convex sets all reduce to a single univariate root-finding problem. This leads to a fast projection algorithm shown numerically robust over a wide range of inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信